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1. Topological Vector Spaces

We consider only real or complex vector spaces.

Definition 1.1. A topological vector space is a Hausdorff topological spaceX which
is also a vector space such that the maps

a) x, y 7→ x− y is continuous from X ×X to X and
b) α, x 7→ αx is continuous from {scalars} ×X to X.

Exercise 1.1. Prove that if X is a topological space and a vector space such that
a) and b) hold and such that for every x 6= 0 ∃ a neighborhood U of 0 such that
x /∈ U then X is a Hausdorff space (and is therefore a topological vector space).

Date: January 14, 2008 File:713notes2008.tex .

1
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Exercise 1.2. Consider R2 with the following topology: A set V ⊂ R2 is open iff
for each point (a, b) ∈ V there is an ε > 0 such that {(x, b) : |x− a| < ε} ⊂ V .

(1) Prove that R2 is a Hausdorff space in this topology.
(2) Determine whether or not R2 is a topological vector space in this topology

(with the usual vector space operations).

Example 1.2. Any normed linear space is a topological vector space in the metric
topology determined by the norm:

d(x, y) = ‖x− y‖.

Definition 1.3. A semi–norm N on a vector space X is a function N : X → R
such that

(1) Positivity: N(x) ≥ 0 ∀x ∈ X.
(2) Positive homogeneity: N(αx) = |α|N(x)
(3) Subadditivity: N(x+ y) ≤ N(x) +N(y)

(Recall that a norm is a semi–norm such that N(x) = 0 implies that x = 0.) If
N is a semi–norm on X and a ∈ X and ρ > 0, then

SN (a, ρ) := {x ∈ X : N(x− a) < ρ}
is called the open N ball of radius ρ centered at a.

Example 1.4. Let L be any linear functional on X. Then N(x) = |L(x)| is a
semi–norm.

Definition 1.5. A collection N of semi–norms on a vector space X is called sepa-
rating if N(x) = 0 ∀N ∈ N implies that x = 0 .

If N is a family of semi–norms on X, a set S of the form

(1.1) S = SN1(a, ρ1) ∩ SN2(a, ρ2) ∩ . . . ∩ SNk
(a, ρk),

where a ∈ X, N1, N2, . . . , Nk ∈ N and ρ1, ρ2, . . . ρk ∈ (0,∞), is called an open N−
ball centered at a.

Definition 1.6. Given a family N of semi-norms on a vector space X, let XN

denote X equipped with the topology having the open N – balls as a basis. (You
should check that the N balls form a basis for a topology.) Explicitly, a set V ⊂ X
is open iff for all a ∈ V there exists an open N ball S centered at a such that
S ⊂ V. (It is easy to verify that XN is Hausdorff iff N is separating and that XN

is a topological vector space when N is separating.)

Examples 1.7. Some examples of topological vector spaces.
(1) S(R) = C∞ complex valued functions f on R such that xnf (k)(x) ∈ L2

∀n ≥ 0 and k ≥ 0. Let ‖f‖n,k = ‖xnf (k)‖L2 . If N = {‖ · ‖n,k} then SN is
called the Schwartz space of rapidly decreasing functions. N is separating
because ‖f‖0,0 = 0 implies that f = 0.

(2) If Y is a set of linear functionals on X which separates points of X then the
Y topology of X is the topology determined by the semi–norms NL(x) =
|L(x)|, L ∈ Y . Notation: σ(X,Y ).

(3) Special Case. X = C([0, 1]), Y = point evaluations, i.e., Y = all finite linear
combinations of Lt, t ∈ [0, 1] where Lt(f) = f(t). Note that a sequence
fn ∈ X converges to f ∈ X in this topology iff fn(t) → f(t) for each
t ∈ [0, 1].
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Remark 1.8. The Hahn–Banach theorem may be stated thus. If N is a semi–norm
on a linear space X and V is a subspace of X and f is a linear functional on V
such that |f(x)| ≤ aN(x), x ∈ V then ∃ a linear functional g on X such that
|g(x)| ≤ aN(x) ∀x ∈ X and f(x) = g(x), x ∈ V .

Remark 1.9. If N is a separating family of semi–norms on X then the space (XN )∗

of continuous linear functionals on XN separates points of X. For if x0 6= 0 let
f(αx0) = α on span({x0}). There exist N ∈ N such that N(x0) 6= 0. Then

|f(αx0)| = |α| = N(αx0)
N(x0)

and hence there exists a linear functional g on X such that

g(x0) = 1 and g(x) ≤ N(x)
N(x0)

∀x ∈ X.

Clearly g ∈ (XN )∗.

Exercise 1.3. A function f : R → C is said to be of polynomial growth if

|f(x)| ≤ C(1 + |x|k)

for some constant C, some integer k and for all x. A Borel measure µ on R is said
to be of polynomial growth if∫

R
(1 + |x|k)−1dµ(x) <∞

for some integer k. For example Lebesgue measure is of polynomial growth.
(1) Suppose that f : R → C is a Borel measurable function of polynomial

growth and µ is a measure of polynomial growth. For ϕ in S(R) [see
Example 1.7 above] write

(1.2) (fµ)(ϕ) =
∫ ∞

−∞
ϕ(x)f(x)dµ(x).

Show that the integral in equation (1.2) exists and defines a continuous
linear functional (which we denote by fµ) on S(R).

(2) Show that the operator
d

dx
: S(R) → S(R)

is everywhere defined and continuous.
(3) If µ is Lebesgue measure we will write fdx instead of fµ. By virtue of b)

the operator (− d
dx ) has an adjoint D : S ′(R) → S ′(R) where S ′(R) denotes

the dual space of S(R) (i.e., the space of continuous linear functionals on
S(R)). Suppose that g is a continuously differentiable function of poly-
nomial growth whose derivative g′ also has polynomial growth. Describe
explicitly the linear functional D(gdx) by writing it in the form (1.2) for
some wise choice of f and µ and compute it in case g(x) = x2 + 3x.

(4) Suppose

g(x) = χ[0,∞)(x) =
{

1 if x ≥ 0
0 if x < 0.

Describe D(gdx) explicitly by writing it in the form (1.2) for some wise
choice of f and µ.
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(5) Since D is an everywhere defined linear operator on S ′(R) so is Dn for
n = 1, 2, 3, . . .. In part d) above D2(gdx) is therefore an element of S ′(R).
Determine whether it can be written in the form (1.2). Prove your claim.

Definition 1.10. Let X be a linear space. A set A ⊂ X is called convex if for any
x, y ∈ A, αx+ (1− α)y ∈ A whenever 0 ≤ α ≤ 1.

Definition 1.11. A topological linear space X is locally convex if X has a neigh-
borhood base at 0 consisting of convex sets, i.e., for any open neighborhood U of 0
∃ a convex open neighborhood V of 0 such that V ⊂ U .

Theorem 1.12. Let X be a topological linear space. Let N be the family of con-
tinuous semi–norms on X. Then XN = X if and only if X is locally convex.

The proof of this theorem will be given after the proof of Lemma 1.17. Before
starting into the proof we state a corollary.

Corollary 1.13. If X is a locally convex topological linear space then the topological
dual space X∗ separates points of X.

Proof. It follows from Theorem 1.12 and Remark 1.9.
The proof of Theorem 1.12 depends on the following lemmas.

Definition 1.14. Let S ⊂ X be a set. Then
(1) S is called symmetric if x ∈ S implies that αx ∈ S whenever |α| = 1.
(2) S is absorbing if for every x ∈ X, ∃α > 0 such that x ∈ αS.
(3) S is linearly open if for every x0 6= 0, {α : αx0 ∈ S} is open.

Remarks 1.15. Let S ⊂ X then
(1) if S is absorbing then 0 ∈ S.
(2) If S is nonempty, convex and symmetric then 0 ∈ S.
(3) The intersection of convex sets is convex.

Lemma 1.16. Let X be a linear space. A set S ⊂ X is convex, symmetric,
absorbing and linearly open iff ∃ a semi–norm N 3 S = {x ∈ X : N(x) < 1}.

Proof. (⇐) Let S = {x : N(x) < 1}. S is convex since N(αx + (1 − α)y) ≤
αN(x) + (1− α)N(y) < 1 if x, y ∈ S. S is clearly symmetric.
S is absorbing: N(x) = 0 implies that x ∈ S. If N(x) 6= 0 let α = 2N(x). Then

x/α ∈ S.
S is linearly open: {α : αx0 ∈ S} = {α : N(αx0) < 1} = {α : |α|N(x0) < 1}

which is open.
(⇒) Assume S is a symmetric, absorbing, convex, linearly open set. Define

N(x) = inf{α : α > 0, x ∈ αS}. Then N(0) = 0 since 0 ∈ S (because S is
absorbing). If β 6= 0 then

N(βx) = inf{α : α > 0, βx ∈ αS} = inf
{
α : α > 0, x ∈ α

β
S

}
= inf

{
α : α > 0, x ∈ α

|β|
S

}
by symmetry of S

= inf{|β|γ : γ > 0, x ∈ γS} = |β|N(x).

This shows positive homogeneity. We must show subadditivity. Given x, y ∈ X.
Take α > N(x), β > N(y) 3 ∃ u, v ∈ S with x = αu, y = βv. Then

x+ y

α+ β
=

α

α+ β
u+

β

α+ β
v ∈ S
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∴ x+ y ∈ (α+ β)S

∴ N(x+ y) ≤ α+ β for all such α and β

∴ N(x+ y) ≤ inf
α

(α+ β) = N(x) + β ∀ such β

∴ N(x+ y) ≤ N(x) + inf β = N(x) +N(y)
∴ N is a seminorm.

Now suppose N(x) < 1. ∃α < 1 3 x ∈ αS, i.e., x/α ∈ S. Then x = α(1/α)x+ (1−
α)0 ∈ S. Conversely if x ∈ S then α−1x ∈ S for some α < 1 because S is linearly
open. So N(x) < 1.

∴ S = {x : N(x) < 1}

Lemma 1.17. A topological vector space is locally convex iff the convex symmetric
neighborhoods of zero form a base at 0.

Proof. ⇐ trivial
⇒ Let V be a convex neighborhood of 0. Let V1 =

⋂
|p|=1

pV . Then V1 ⊂ V

and 0 ∈ V1. V1 is an intersection of convex sets so is convex. If |β| = 1 then
βV1 =

⋂
|p|=1

βpV =
⋂
|γ|=1

γV = V1. Therefore V1 is symmetric.

We show next that the interior of V1 is not empty. Since (α, x) 7→ αx is continu-
ous and 0 · 0 = 0 ∈ V ∃ an a > 0 and a neighborhood V2 of 0 3 αV2 ⊂ V whenever
|α| < a. Put V3 = (a/2)V2. Then if |p| = 1, pV3 = pa

2 V2 ⊂ V . ∴ V3 ⊂ pV if |p| = 1.
∴ V3 ⊂ V1. So V1 has a non–empty interior W and 0 ∈W ⊂ V .

Claim: W is convex and symmetric.
Convexity: Let x, y ∈W and let α, β > 0, with α+β = 1. Since V1 is convex and

W ⊂ V1 we may conclude that αx+βy ∈ V1. Since W is open x has a neighborhood
U ⊂ W and we may similarly conclude that the open set αU + βy is contained in
V1, and hence in its interior, W . In particular αx+ βy ∈W . So W is convex.

Symmetry: If x ∈W and |β| = 1 then βx ∈ βW ⊂ βV1 = V1. Since βW is open
βx ∈ intV1.

We are now ready for the proof of Theorem 1.12. The proof given here will follow
Rudin 1.33–1.39, p. 24–28] [1975].

Proof. (Proof of Theorem 1.12.) Assume X = XN . If V is a neighborhood of
0 then by definition there exists N1, . . . , Nk ∈ N and Pj > 0, j = 1, 2, . . . , k such
that V ⊃ {x : Nj(x) < Pj , j = 1, 2, . . . , k}. This is an intersection of convex sets
by Lemma 1.16 and is therefore a convex neighborhood of 0. Thus X is locally
convex. Conversely, suppose X is locally convex. Clearly X ⊃ XN , i.e., XN is a
weaker topology than the original X topology. Suppose V is an open neighborhood
of 0. By Lemma 1.17 ∃ a convex symmetric neighborhood W of 0 3 W ⊂ V . W
is absorbing, for if x ∈ X then 0 · x = 0 ∈ W . ∴ ∃a > 0 3 αx ∈ W for |α| < a.
Take α = a/2. W is linearly open since {α : αx0 ∈ W} is the inverse image of
an open set W under the continuous map α → αx0. Hence by Lemma 1.16 there
exists a semi–norm N on X 3 W = {N(x) < 1}. N is continuous at 0 since
{N(x) < ε} = εW which is open. ∴ N is continuous ∴ XN ⊃ X.

Remark 1.18. If V is a neighborhood of zero in a locally convex space then ∃ a
continuous semi–norm N with {x : N(x) < 1} ⊂ V , for we know X = XN where
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N is the family of continuous semi–norms

∴ ∃Nj , ρj such that
m⋂

j=1

{x : Nj(x) < ρj} ⊂ V

∴ Take N =
m∑

j=1

ρ−1
j Nj

Definition 1.19. Let X be a normed linear space and X∗ its dual space (all
continuous linear functionals on X).

(1) The weak topology on X is the X∗ topology of X, i.e., σ(X,X∗).
(2) The weak∗ topology on X∗ is the X topology of X∗, i.e., σ(X∗, X̃) where X̃

is the image ofX inX∗∗ .[Recall topology of product spaces and Tychonoff’s
Theorem.]

Theorem 1.20 (Banach–Alaoglu Theorem). Let X be a normed linear space. Then
the unit ball of X∗ is weak∗ compact.

Proof. Let A = {scalar valued functions ξ on X : |ξ(x)| ≤ ‖x‖∀x}. For x ∈ X
let Bx = {λ : |λ| ≤ ‖x‖}. Bx is compact. Therefore A =

∏
x∈X

Bx is compact. A

basic neighborhood of a point ξ0 is

{ξ : |ξ(xj)− ξ0(xj)| < ε, j = 1, . . . , n}

The projection map ξ 7→ ξ(x) from A to {scalars} is continuous for each x in
this (product) topology. Now the unit ball of X∗ ⊂ A. The induced topology is
the weak∗ topology on X∗. It remains to show the unit ball is closed in A.

Let x, y ∈ X, α, β scalars

ξ(αx+ βy)− αξ(x)− βξ(y) is a continuous function of ξ on A.

∴ {ξ : ξ(αx+ βy)− αξ(x)− βξ(y) = 0} is closed in A.

Hence ⋂
x,y,α,β

{ξ : ξ(αx+ βy)− αξ(x)− βξ(y) = 0} is closed in A.

But this is the unit ball.

Exercise 1.4. Let X be a separable Banach space. Show that the weak∗ topology
on the closed unit ball B of X∗ is metrizable. Hint: let {x1, x2, . . .} be a sequence
of unit vectors in X which is dense in {x ∈ X : ‖x‖ = 1}. Consider

d(ξ, η) :=
∞∑

n=1

2−n|(ξ − η)(xn)|.

Note: The Banach–Alaoglu theorem together with Exercise 1.4 shows that B is
sequentially compact when X is separable.

aaaaaaaaaaa



MATH 713 SPRING 2008 LECTURE NOTES ON FUNCTIONAL ANALYSIS 7

1.1. The Krein-Milman theorem.

Definition 1.21. Let X be a topological vector space.
(1) A set K ⊂ X is called compex if it is compact and convex.
(2) A segment is a set of the form {αx + βy : α + β = 1, 0 ≤ α ≤ 1} for

some x, y ∈ X. . For x 6= y, the interior of a segment is {αx+ βy : α, β >
0 α+ β = 1}.

(3) A point x ∈ K is an extreme point of K if it is not contained in the interior
of any segment of K.

(4) If K is compex F ⊂ K is a face of K if F is compex and every segment in
K having a point of F in its interior is contained in F , i.e., αx+βy ∈ F for
some α, β with 0 < α, β < 1 and α+ β = 1 implies that αx+ βy ∈ F ∀α,
β such that 0 ≤ α, β ≤ 1 and α+ β = 1.

Notation 1.22. Let S be a subset of X. The compex hull of S is the smallest
compex set, if any, containing S. If there is any compex set containing S then the
intersection of all such compex sets is clearly the compex hull of S. Let K be a
non-empty compex set. We will denote by K̂ the compex hull of the set of extreme
points of K, i.e.

K̂ = ∩{compex sets containing all extreme points of K}.

It follows immediately from the definition that K̂ ⊂ K and K̂ is non-empty.

Theorem 1.23. (Krein–Milman Theorem) Let X be a locally convex topological
vector space. If K is compex, then K̂ = K.

We will need two lemmas before giving the proof of the theorem.

Lemma 1.24. Let X be a real or complex locally convex topological vector space
and K compex ⊂ X. If x0 /∈ K then ∃ a continuous linear functional ξ0 3 ξ0(x0) /∈
ξ0(K).

Proof. Step 1: Reduction to finite dimensions. Without loss of generality
we may take x0 = 0. Since the complement of K is open there is a convex, sym-
metric (absorbing, linearly open) neighborhood, S, of 0 which is disjoint from K.
There exists a continuous semi–norm N such that S = {x : N(x) < 1}. By the
Hahn-Banach theorem there exists, for each x0 ∈ X a continuous linear functional
ξx0 such that

a. |ξx0(y)| ≤ N(y) and
b. ξx0(x0) = N(x0). (Use the construction method of Remark 1.9, starting with

ξx0(αx0) = αN(x0) on span x0.)
Since N(x) ≥ 1 for any x ∈ K the collection of open sets {y : |ξx(y)| > 1/2}x∈K

is an open cover of K. Hence there exists x1, . . . , xn such that

K ⊂
n⋃

j=1

{y : |ξxj (y)| >
1
2
}.

Define A : X → Rn or Cn for real or complex X, respectively, by

Ax = (ξx1(x), ξxi(x), . . . , ξxn(x)).

Then A is continuous and linear. Let K̃ = A(K). 0 /∈ K̃ since if (α1, . . . , αn) ∈ K̃
then ∃j such that |αj | = |ξxj (x)| > 1

2 . We write the rest of the proof in case X
is complex, but the proof is the same in case X is real. We need only construct a
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linear functional η : Cn → C such that 0 /∈ η(K̃) and then put ξ0 = η ◦A. For then
0 /∈ ξ0(K). We have thus reduced the problem to a finite dimensional one.

Step 2: The finite dimensional case. Construction of η. Let ‖ · ‖ be the
usual Hilbert norm on Cn. There exists r ∈ K̃ such that ‖r‖ = inf

y∈ eK ‖y||. Write

r = (α1, . . . , αn). Let η(y1, . . . , yn) = y1α1 + · · · + ynαn. Suppose s ∈ K̃ and
η(s) = 0, i.e., (s, r) = 0. Put a = ‖r‖, b = ‖s‖. Then

t =
b2

a2 + b2
r +

a2

a2 + b2
s ∈ K̃.

But

‖t‖2 =
( b2a

a2 + b2

)2

+
( a2b

a2 + b2

)2

+ 2Re
b2

a2 + b2
a2

a2 + b2
(r, s)

=
a2b2

a2 + b2
= a2 − a4

a2 + b2
< a2

which contradicts the fact that r is the smallest vector in K̃. Hence η(s) 6= 0 if
s ∈ K̃.

Remark 1.25. ξ0 may be chosen real even if X is complex because if X is a locally
convex vector space over C, then it is a locally convex vector space over R in the
same topology.

For the next lemma we will need the following machinery.

Remarks 1.26. The following properties are easily checked:
(1) ∩ faces = face
(2) A face of a face is a face.
(3) If A : H → H̃ is continuous and linear and K is compex then A(K) compex
(4) If F̃ is a face of K̃ ≡ A(K) then F ≡ K ∩A−1(F̃ ) is a face of K.
(5) If F̃ $ K̃ ≡ A(K) then F ≡ K ∩A−1(F̃ ) 6= K

Definition 1.27. F is an extreme face of K if it is a face of K such that the faces
of it (F ) are precisely ∅ and F .

Lemma 1.28. Let X be a topological vector space such that X∗ separates points of
X (e.g. X locally convex). Then a non–empty extreme face is an extreme point.

Proof. View X as a vector space over R, and let ξ be a continuous real linear
functional on X. Let F be an extreme face of K. ξ(F ) is a compact convex subset
of the reals ∴ ξ(F ) = [α, β].
{α} is a face of ξ(F ).

∴ F ∩ ξ−1{α} is a non-empty face of F

∴ F ∩ ξ−1{α} = F

Hence ξ(F ) = {α} by item 5 of Remark 1.26

But if F has two distinct points, then ∃ a real linear functional which separates
them. Therefore, F has only one point.

Proof of Krein-Milman theorem. Clearly K̂ ⊂ K. For any real linear
continuous functional, ξ, on X, ξ(K̂) ⊂ ξ(K). Let α be an endpoint of ξ(K).
K ∩ ξ−1{α} is a face of K. Let T = {non–empty faces of K ∩ ξ−1{α}}. Order T
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by reverse inclusion. (T is partially ordered.) The intersection of a simply ordered
collection (chain) in T is non–empty because of the finite intersection property
of compact sets. By Zorn’s Lemma, ∃ an extreme face in K ∩ ξ−1{α}. This is
an extreme point by Lemma 1.28 ∴ (K ∩ ξ−1{α}) ∩ K̂ 6= ∅. Hence α ∈ ξ(K̂) ∴
endpoints of ξ(K) ∈ ξ(K̂) so ξ(K) ⊂ ξ(K̂). Hence ξ(K) = ξ(K̂) ∀ real linear
functional ξ. Theorem 1.23 now follows from Lemma 1.24.

Application 1. Let H be a Banach space and S be the unit sphere in H∗. In the
w∗ topology on H∗, S is compex. Hence Ŝ = S. Therefore, if a Banach space is
the dual of a normed linear space, its unit sphere must satisfy the condition Ŝ = S.
For example we may use this to prove that Real C[0, 1] is not a dual space under
‖ ‖∞ of any Banach space.

Proof. Suppose that f ∈ Real C([0, 1]) and is an extreme point of the unit ball.
Let g(s) = f(s) − |f(s)| + 1 and h(s) = f(s) + |f(s)| − 1. Then ‖g‖∞ ≤ 1 and
‖h‖∞ ≤ 1 since ‖f‖∞ ≤ 1, as we see by considering for each s the cases f(s) ≥ 0
and f(s) < 0. But f = (1/2)g+(1/2)h. Hence since f is an extreme point we must
have g = h. That is, |f(s)| = 1 for all s. Hence f ≡ 1 or f ≡ −1. These are the
only extreme points of the closed unit ball S. Hence Ŝ 6= S. So S is not compact
in any locally convex topology on Real C([0, 1]). Therefore Real C([0, 1]) is not a
dual space of any Banach space.

Exercise 1.5. Prove that the closed unit ball of real L1(0, 1) has no extreme points
and therefore L1(0, 1) is not a dual space.

Definition 1.29. Two norms ‖ · ‖1 and ‖ · ‖2 are equivalent if ∃ constants m > 0,
M > 0 such that

m‖x‖1 ≤ ‖x‖2 ≤M‖x‖1, ∀x ∈ X.
Exercise 1.6. Show that any two norms on a finite dimensional linear space are
equivalent. [Hint: Show that any norm is equivalent to a Euclidean norm.]

Proposition 1.30. A finite dimensional subspace F of a normed linear space X
is closed in X.

Proof. By Exercise 1.6 the norm on F is equivalent to any Euclidean norm on
F and therefore F is complete in its own norm. Suppose then that {xn}∞n=1 is a
sequence in F that converges to a point x in X. Then {xn} is a Cauchy sequence in
F which therefore converges by completeness of F to a point y in F . By uniqueness
of limits x = y. So x is in F and F is closed in X.

Fact 1. If a finite dimensional vector space is a topological vector space in two
topologies T1, T2, then T1 = T2.

Lemma 1.31. Let H be a normed linear space and H0 a closed proper subspace.
For any ε > 0, there exists x0 ∈ H such that ‖x0‖ = 1 and ‖x − x0‖ ≥ 1 − ε
whenever x ∈ H0.

Proof. Can assume ε < 1. Take any z0 /∈ H0. Let d = inf
x∈H0

‖x − z0‖. For

any δ > 0, there exists z ∈ H0, such that ‖z − z0‖ ≤ d + δ. Take δ = εd
1−ε . Let

x0 = (z − z0)/‖z − z0‖, where z is determined for this δ. Then ‖x0‖ = 1, and if
x ∈ H0,

‖x− x0‖ =
‖(‖z − z0‖)x− z + z0‖

‖z − z0‖
≥ d

‖z − z0‖
≥ d

d+ δ
= 1− ε.
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Proposition 1.32. A locally compact Banach space is finite dimensional.

Proof. We prove that an infinite dimensional Banach space is not locally com-
pact. We construct a sequence x1, x2, . . . , xn, . . . such that ‖xn‖ = 1, ‖xi − xj‖ ≥
1/2, i 6= j. Take x1 to be any unit vector. Suppose vectors x1, . . . , xn are con-
structed. Let H0 = linear manifold spanned by x1, . . . , xn. By Proposition 1.30,
H0 is closed. By Lemma 1.31, ∃ xn+1 3 ‖xi − xn+1‖ ≥ 1/2, i = 1, . . . , n. Now the
sequence just constructed has no Cauchy subsequence. Hence the closed unit ball
is not compact. Similarly the closed ball of radius r > 0 is also not compact.
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2. Banach Algebras

Definition 2.1. An associative algebra A over a field F is a vector space over F
with a bilinear, associative multiplication: i.e.,

(ab)c = a(bc)

a(b+ c) = ab+ ac

(a+ b)c = ac+ bc

a(λc) = (λa)c = λ(ac)

Definition 2.2. A Banach Algebra is a real or complex Banach space which is an
associative algebra such that

‖ab‖ ≤ ‖a‖ ‖b‖.

Examples 2.3. (1) X = topological space, C(X) = bounded, complex valued,
continuous functions on X, with ‖f‖ = sup

x∈X
|f(x)|. C(X) is a commutative

Banach algebra under pointwise multiplication. The constant function 1 is
an identity element.

(2) V = Banach space, B(V ) = all bounded operators V → V . B(V ) is a
Banach algebra in operator norm with identity. B(V ) is not commutative
if dimV > 1.

(3) A = L1(R1) Multiplication = convolution. A is a commutative Banach
algebra without identity.

Proposition 2.4. Let A be a (complex) Banach algebra without identity. Let

B = {(a, α) : a ∈ A, α ∈ C} = A⊕ C.

Define
(a, α)(b, β) = (ab+ αb+ βa, αβ)

and
‖(a, α)‖ = ‖a‖+ |α|.

Then B is a Banach algebra with identity e = (0, 1), and the map a→ (a, 0) is an
isometric isomorphism onto a closed two sided ideal in B.

Proof. Straightforward.

Definition 2.5. Let A be a Banach algebra with identity 1. If a ∈ A, then a is
right invertible if ∃ b ∈ A 3 ab = 1. b is called a right inverse. (Similarly for left
inverse.) a is called invertible if it has a left and a right inverse.

Note: If ab = 1 and ca = 1 then c = cab = b. Therefore if a has left and right
inverses they are equal, unique, and called the inverse of a.

Proposition 2.6. A = Banach algebra with 1. If ‖a‖ < 1, then 1− a is invertible
and ‖(1− a)−1‖ ≤ 1

1−‖a‖ .

Proof. Let b =
∞∑

n=0

an. Since ‖an‖ ≤ ‖a‖n, the series converges (A is complete).

Clearly, (1− a)b = b(1− a) = 1. Also ‖b‖ ≤
∞∑

n=0

‖a‖n =
1

1− ‖a‖
.



12 LEONARD GROSS

Corollary 2.7. If A is a Banach algebra with 1, the invertible elements form an
open set.

Proof. Let U be the set of invertible elements. Let a ∈ U . Suppose ‖x− a‖ <
‖a−1‖−1. Then: ‖a−1x−1‖ = ‖a−1(x−a)‖ ≤ ‖a−1‖ ·‖x−a‖ < 1. ∴ 1− (1−a−1x)
is invertible, i.e., a−1x has an inverse b. ∴ (ba−1)x = 1 and a−1xb = 1. ∴ xb = a,
xba−1 = 1.

Exercise 2.1. Prove that the map x→ x−1 from the set U of invertible elements
in A (= Banach algebra with 1) is continuous.

Henceforth all Banach algebras A are complex and have an identity. U = invert-
ible elements.

Convention: We write λ instead of λ1.

Definition 2.8. Let x ∈ A. The spectrum of x is

σ(x) = {λ ∈ C : x− λ is not invertible}.

The resolvent set of x is

ρ(x) = {λ ∈ C : x− λ is invertible}.

The resolvent of x is the function

R(λ) = (x− λ)−1 defined for λ ∈ ρ(x).

The spectral radius, r(x), of x is

r(x) ≡ sup{|λ| : λ ∈ σ(x)}.

(Note: We will show later that σ(x) 6= ∅.)

Theorem 2.9. For all a ∈ A,
1. r(a) ≤ ‖a‖
2. σ(a) is compact
3. σ(a) is nonempty

Proof of 1. and 2. Since λ ∈ C → a − λ ∈ A is continuous and ρ(a) =
{λ : a − λ ∈ U}, ρ(a) is open and hence σ(a) = ρ(a)c is closed. If |λ| > ‖a‖, then
‖λ−1a‖ < 1 and

∴ λ−1a− 1 ∈ U
∴ a− λ ∈ U since λ 6= 0

∴ λ ∈ ρ(a) whenever |λ| > ‖a‖
∴ r(a) ≤ ‖a‖ and σ(a) is compact.

In order to prove that σ(a) is non-empty we will need to replace the finite di-
mensional proof of this, which you may recall is based on the fact that det(a− λ)
has at least one zero, by a different use of analytic function theory.

Definition 2.10. A function ϕ from an open set V ⊂ C to a complex Banach
space is weakly analytic on V if ξ ◦ ϕ is analytic on V for every ξ ∈ A∗.

Proposition 2.11. Let A be a complex Banach algebra with 1 and let a ∈ A. Then
R(λ) = (a− λ)−1 is weakly analytic on ρ(a) and ‖R(λ)‖ → 0 as λ→∞.
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Proof. Let λ0 ∈ ρ(a). Now

a− λ = (a− λ0)(1− (a− λ0)−1(λ− λ0)).

So a− λ is invertible if ‖(a− λ0)−1(λ− λ0)‖ < 1 and then:

(a− λ)−1 =
∞∑

n=0

(a− λ0)−n(λ− λ0)n(a− λ0)−1

∴ ξ((a− λ)−1) =
∞∑

n=0

ξ((a− λ0)−n−1)(λ− λ0)n

∴ ξ(R(λ)) is analytic.

Finally, (a − λ)−1 = [λ(λ−1a − 1)]−1 = λ−1(λ−1a − 1)−1 and ‖(λ−1a − 1)−1‖ ≤
1

1−|λ|−1‖a‖ → 1 as λ→∞ ∴ ‖R(λ)‖ → 0 as λ→∞.
Proof that σ(a) is not empty. Suppose σ(a) is empty. Then for any ξ ∈ A∗,

λ→ ξ((a−λ)−1) is an entire function and goes to 0 as λ→∞. Then, by Liouville’s
theorem,

ξ[(a− λ)−1] ≡ 0
Therefore (a−λ)−1 ≡ 0 ∀λ. This is impossible. This completes the proof of theorem
2.9.

Theorem 2.12. (Spectral Mapping Theorem) If p is a polynomial then p(σ(a)) =
σ(p(a)).

Proof. Let λ0 ∈ σ(a). We will show that p(a)− p(λ0) /∈ U . Let q be such that
p(λ)− p(λ0) = (λ− λ0)q(λ).

Suppose there exists b so that b(p(a)− p(λ0)) = (p(a)− p(λ0))b = 1. Then

bq(a)(a− λ0) = (a− λ0)q(a)b = 1.

Thus a− λ0 is invertible. Contradiction. Thus p(σ(a)) ⊂ σ(p(a)).
Suppose λ0 ∈ σ(p(a)). Let λ1, . . . , λn be the roots of p(λ) = λ0. Thus p(λ)−λ0 =

α(λ − λ1) · · · (λ − λn). But p(a) − λ0 = α(a − λ1) · · · (a − λn) is not invertible.
Hence at least one of the factors, say a−λj is not invertible. Thus λj ∈ σ(a). Thus
λ0 = p(λj) ∈ p(σ(a)).

Corollary 2.13. r(an) = r(a)n.

Proof. Since σ(a) is compact ∃ λ ∈ σ(a) so that |λ| = r(a). Hence λn ∈ σ(an)
so r(an) ≥ |λn| = r(a)n.

Conversely, ∃λ0 ∈ σ(an) so that r(an) = |λ0|. By Theorem 2.12, ∃λ ∈ σ(a) such
that λn = λ0. Thus r(a)n ≥ |λ|n = |λ0| = r(an).

Corollary 2.14. r(a) = lim
n→∞

‖an‖1/n.

Proof. For λ sufficiently small:

(1− λa)−1 =
∞∑

n=0

anλn and ξ((1− λa)−1) =
∞∑

n=0

ξ(an)λn.

By Theorem ??, ξ((1−λa)−1) is analytic for 1
λ /∈ σ(a). Hence

∞∑
n=0

ξ(an)λn converges

when 1
|λ| > r(a), i.e., when |λ| < 1/r(a).
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Thus {|λn| |ξ(an)| : n = 0, 1, 2, . . .} is a bounded set for each ξ ∈ A∗.
By the uniform boundedness principle {λnan} is a bounded set: So

‖λnan‖ ≤ K (K > 0).

Hence |λ|‖an‖1/n ≤ K1/n and |λ| lim sup ‖an‖1/n ≤ 1. Thus lim sup ‖an‖1/n ≤
1/|λ| whenever r(a) < 1

|λ| . Hence lim sup ‖an‖1/n ≤ r(a). But r(a)n =
r(an) ≤ ‖an‖ or r(a) ≤ ‖an‖1/n. Therefore r(a) ≤ lim inf ‖an‖1/n. Consequently
lim ‖an‖1/n exists and r(a) = lim ‖an‖1/n.

Theorem 2.15. (Gelfand–Mazur) The only complex Banach algebra with unit
which is a division algebra is C.

Proof. Let a ∈ A and λ ∈ σ(a). Then a− λ1 is not invertible. Thus a− λ1 = 0
so a = λ1. Hence A = {scalar multiples of 1}.

2.1. Commutative Banach algebras. Henceforth B will denote a commutative
Banach algebra with identity.

Example 2.16. LetX be a compact Hausdorff space. Then C(X) is a commutative
Banach algebra with identity in the sup norm under pointwise multiplication. We
will refer to this space from time to time and always take these functions to be
complex valued.

Example 2.17. Let B2 denote the set of 2 by 2 complex matrices of the form(
a b
0 a

)
with a and b complex. This is a commutative Banach algebra in the

operator norm and the usual matrix product.

Example 2.18. Let Ba be the set of continuous complex valued functions on the
unit disk {z ∈ C : |z| ≤ 1} which are analytic in the interior of the disk. Then Ba

is a Banach algebra in the sup norm and pointwise multiplication.

Our goal in this section and the next is to determine which commutative Banach
algebras with identity are isomorphic to the simplest of these three examples, C(X).
It is clear that the second example, B2, cannot be isomorpic to C(X) for any

compact Hausdorff space X because it contains the nonzero element
(

0 1
0 0

)
whose

square is zero. The third example is also not isomorphic to any C(X), as we will
see later.

The next two theorems are devoted to producing a compact Hausdorff space X
from a given commutative Banach algebra B such that B might be isomorphic to
C(X).

Definition 2.19. A character of B is a nonzero multiplicative linear functional on
B, i.e., α(ab) = α(a)α(b). (We do not assume α is bounded.)

The spectrum of B is the set B̃ of all characters of B.

Theorem 2.20. In any commutative Banach algebra with identity B̃ is a weakly
closed subset of the unit ball of B∗ in the weak∗ topology. In particular B̃ is a
compact Hausdorff space in this topology.

Notation 2.21. (The Gelfand map.) For a ∈ B and α ∈ B̃ define

(2.1) â(α) = α(a)
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From the definition of the weak∗ topology its clear that â is a continuous function
on the compact Hausdorff space B̃. The map a 7→ â from B into C(B̃) is called the
canonical map or the Gelfand map.

Theorem 2.22. (Gelfand) The canonical map is a homomorphism from B into
C(B̃) with norm at most one.

The rest of this section will be devoted to proving these two theorems.

Definition 2.23. An ideal I ⊂ B is called a maximal ideal if I 6= B and I is not
contained in any larger proper ideal.

Remarks 2.24. (1) If {0} is the only proper ideal in B then B is a field.
(2) If I is a maximal ideal in B then B/I is a field.
(3) Let a ∈ B. a is invertible if and only if a belongs to no maximal ideal. [If a

is not invertible then the proper ideal Ba is contained in a maximal ideal.]
(4) ∪ (maximal ideals) = S = (singular elements).
(5) If α ∈ B̃ then α(1) = 1.
(6) If I is a proper ideal in B then I is a proper ideal. Here I denotes the

closure of I. Proof. I is a subspace and if b ∈ B, a ∈ I and an ∈ I, an → a
then ba = lim ban ∈ I. Hence I is an ideal. Now, I ⊂ S and S is closed.
Thus I ⊂ S so I is proper.

(7) If I is a maximal ideal then I = I.

Definition 2.25. The radical of B = ∩ (maximal ideals) . It is clear from item (7)
above that the radical of B is closed. B is called semisimple if its radical = {0}.

Exercise 2.2. Let B be a Banach space and K a closed subspace.
(1) On the quotient space B/K define ‖x+K‖ = inf{‖y‖ : y ∈ x+K}. Prove

this is a norm on B/K and that B/K is a Banach space in this norm.
(2) Suppose further that B is a Banach algebra with identity and K is a closed

proper two sided ideal in B. Show that B/K is a Banach algebra in the
norm described in part (1).

Exercise 2.3. Prove that if B is a Banach space and ξ is a linear functional on B
then ξ is continuous if and only if ker ξ is closed.

Lemma 2.26. Any character is continuous.

Proof. If α is a character of B then I := {a : α(a) = 0} = ker(α) is an ideal
which is proper since α(1) = 1. For any a ∈ B we have:

a =
(
a− α(a)1

)
+ α(a)1 ∈ I ⊕ C1.

This shows that I has codimension 1 (i.e., dim(B/I) = 1)1. So I is maximal and
thus I is closed. Hence α is continuous by Exercise 2.3.

Lemma 2.27. There is a one to one correspondence between characters and max-
imal ideals given by α→ kerα.

Proof. By the proof of Lemma 2.26 we see that kerα is a maximal ideal. Now if
I is any maximal ideal then it is closed by item (7) of Remark 2.24. Hence not only
is B/I a field by item (2) of Remark 2.24 but also B/I is a complex Banach algebra

1Alternatively, α descends to an algebra isomorphism of B/I → C showing that dim (B/I) = 1.
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by Exercise 2.2, part (2). Hence by Theorem 2.15, B/I is isomorphic to C (under
the map u → u1B/I u ∈ C). If β : B → B/I ≡ C is the natural homomorphism
then β is a character. Clearly I = kerβ. So any maximal ideal is the kernel of some
character. Finally, if kerα = kerβ = I then since I has codimension 1 (see Lemma
2.26) and 1 is not in I we may write any element as a = c + u1 with c in I and u
in C. Then α(a) = u = β(a). So kerα uniquely determines α.

Notation 2.28. Terminology: B̃ is sometimes called the maximal ideal space of B.

Proposition 2.29. If α ∈ B̃ then ‖α‖ ≤ 1.

Proof. We must prove that |α(a)| ≤ ‖a‖ or, equivalently, if ‖a‖ ≤ 1 then
|α(a)| ≤ 1. Now ‖a‖ ≤ 1 implies that ‖an‖ ≤ 1. So {an} is a bounded set. Suppose
|α(a)| > 1. Since |α(an)| = |α(a)|n, α sends a bounded set onto an unbounded set.
Thus α is not bounded. This contradicts Lemma 2.26.

Corollary 2.30. B̃ ⊂ unit ball of B∗.

Corollary 2.31. B̃ is a w∗–closed subset of the unit ball in B∗.

Proof. {ξ ∈ B∗ : ξ(ab) = ξ(a)ξ(b)}, (a, b fixed) is closed in the w∗–topology
since both sides of the equation are w∗–continuous functions of ξ. Thus

⋂
a,b

{ξ ∈

B∗ : ξ(ab) = ξ(a)ξ(b)} is w∗–closed. Also {ξ ∈ B∗ : ξ(1) = 1} is w∗–closed. Thus B̃
is w∗ closed.

Corollary 2.32. B̃ is a compact Hausdorff space in the w∗ topology.

This concludes the proof of Theorem 2.20.

Remark 2.33. If B is a commutative Banach algebra without identity and we define
a character as a continuous nonzero homomorphism α : B → C. Then the preceding
arguments shows that B̃ ⊂ (unit ball of B∗) but may not be closed because 0 is a
limit point of B̃. In this case B̃ is locally compact.

Proof of Theorem 2.22. âb(α) = α(ab) = α(a)α(b) = â(α)̂b(α). Thuŝ is a
homomorphism. Now ∀α ∈ B̃ we have:

|â(α)| = |α(a)| ≤ ‖a‖ so ‖â‖∞ ≤ ‖a‖.

Thus the norm of the canonical mapping is ≤ 1.

Corollary 2.34. The kernel of the canonical map is the radical of B.

Proof. If â = 0 then α(a) = 0 ∀α. Hence a ∈ kernel of every α. Therefore a ∈
every maximal ideal. So a ∈ radical of B. Conversely, to see that radical ⊂ kernel
note that each of the last four steps is reversible.

Remark 2.35. We see now that the cononical map is one-to-one if and only if the
radical of B is {0}. Surjectivity can still fail. (But wait till the next section.)

Remarks 2.36 (Continuation of Remark 2.24). a
(8) 1̂(α) = α(1) = 1 ∀α ∈ B̃
(9) λ ∈ σ(a) ⇔ λ ∈ range of â, i.e., σ(a) = R(â).
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Proof:

a inv. ⇔ a is not in any maximal ideal

⇔ â(α) 6= 0 for each α

∴ λ ∈ σ(a) ⇔ a− λ1 ∈ some maximal ideal

⇔ ∃α 3 α(a− λ1) = 0

i.e., â(α)− λ1̂(α) = 0, i.e., â(α) = λ.
(10) The spectral mapping theorem follows from (12). For

σ(P (a)) = R(P̂ (a)) = R(P (â)) = P (R(â)) = P (σ(a)).

(11) r(a) = ‖â‖∞ ≤ ‖a‖ from (12).

∴ r(a+ b) ≤ r(a) + r(b) and r(ab) ≤ r(a)r(b).

(12)The following are equivalent:
a ∈ radical, â = 0, ‖â‖∞ = 0, r(a) = 0.

(13) ‖â‖∞ = ‖a‖ ⇔ ‖a2‖ = ‖a‖2 ∀a ∈ B.
Proof: Recall ‖â‖∞ = ‖a‖ ⇔ r(a) = ‖a‖.

⇐: ‖a2‖ = ‖a‖2 implies that ‖a2n

‖ = ‖a‖2
n

which implies that‖a‖ = ‖a2n

‖1/2n

which implies that ‖a‖ = lim
n
‖a2n

‖1/2n

= r(a)

⇒: r(a) = ‖a‖ ∀ a⇒ ‖a2‖ = r(a2) = r(a)2 = ‖a‖2.

Remark 2.37. If B does not have a unit then a similar theory can be developed in
which B̃ is locally compact.

2.2. ∗–Algebras (over complexes).

Definition 2.38. An involution on a Banach algebra B is a map B → B, a → a∗

which is:
(1) involutory a∗∗ = a
(2) additive (a+ b)∗ = a∗ + b∗

(3) conjugate homogeneous (λa)∗ = λa∗

(4) anti–automorphic (ab)∗ = b∗a∗

Notice that we automatically have 1∗ = 1 because applying ∗ to the equation
1 · 1∗ = 1∗ gives 1∗∗ · 1∗ = 1∗∗. Thus 1 · 1∗ = 1. So 1∗ = 1.

Definition 2.39. An element a is Hermitian if a = a∗, strongly positive if a = b∗b
for some b, positive if σ(a) ⊂ [0,∞) and real if σ(a) ⊂ R is real.

Definition 2.40. An involution ∗ in a Banach algebra B with unit is symmetric if
1 + a∗a is invertible for all a ∈ B.

Proposition 2.41. Let B be a symmetric Banach algebra, then (1) if a is Hermitian
then a is real and (2) if a is strongly positive then a is positive.

Proof. (1) Suppose a is hermitian (a∗ = a) and λ = α+βi ∈ C with β 6= 0. We
must show a− λ is invertible. Since

a− λ = (a− α)− βi = β
(a− α

β
− i

)
,
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we must show that a = a∗ implies a− i is invertible. But

(a− i)(a+ i)(1 + a∗a)−1 = 1 and (1 + a∗a)−1(a+ i)(a− i) = 1

which shows a− i is invertible.
(2) Suppose that a is strongly positive, a = b∗b. Then a∗ = b∗b = a showing that

a is hermitian and hence by (1) that σ(a) ⊂ R. Let α < 0, then

b∗b− α = −α
( b∗b
−α

+ 1
)

= −α
(( b√

−α
)∗( b√

−α
)

+ 1
)

which is invertible showing σ(a) ⊂ [0,∞).

Proposition 2.42. Let B be a commutative ∗ algebra with unit. The following are
equivalent:

(1) B is symmetric
(2) Hermitian implies real
(3) â∗(α) = â(α)
(4) max. ideal implies ∗ ideal. That is, every maximal ideal is closed under ∗.

Proof. 1) ⇒ 2) This is Proposition 2.41.
2) ⇒ 3) Let a ∈ B, b = a + a∗ and c = i(a − a∗). Then b and c are hermitian

and hence σ(b) ⊂ R and σ(c) ⊂ R. Therefore by Remark 2.36, if α is a character
then α(b) and α(c) are real numbers. Hence

(2.2) α(a) + α(a∗) = α(a) + α(a∗)

and
−i(α(a)− α(a∗)) = i(α(a)− α(a∗)),

or equivalently

(2.3) α(a)− α(a∗) = −α(a) + α(a∗).

Adding Eqs. (2.2) and (2.3) shows, α(a) = α(a∗).
3) ⇒ 4) Let I be a maximal ideal. Let α = char. with kernel I.

If a ∈ I then α(a) = 0 so that α(a∗) = α(a) = 0. Hence a∗ ∈ I.

4) ⇒ 1) Let a ∈ B. We first prove that if α is a character then α(a∗) = α(a).
Let b = a − α(a). Then α(b) = α(a) − α(a) = 0. ∴ b ∈ kernel α ∴ b∗ ∈ kernel α,
i.e., α(b∗) = α(a∗)− α(a) = 0. α(a∗) = α(a).

Now α(a∗a) = α(a∗)α(a) = α(a)α(a) = |α(a)|2 for any character α ∴ α(1 +
a∗a) = 1 + |α(a)|2 6= 0. ∴ 1 + a∗a /∈ any maximal ideal. ∴ 1 + a∗a is invertible.

Remark 2.43 (Stone–Weierstrass theorem). Recall if T is a compact Hausdorff space
and B is a norm closed∗ subalgebra, ⊂ C(T ) such that given ξ1, ξ2, t1 6= t2
∃x ∈ B 3 x(t1) = ξ1, x(t2) = ξ2, then B = C(T ). (∗ = conjugation)

Theorem 2.44. If B is commutative, symmetric (with unit), the image of B under
the canonical map is dense in C(B̃).

Proof. Let α1 6= α2 ∈ B̃. Let ξ1, ξ2 be complex. α1(a) 6= α2(a) for some
a ∈ B. There exist λ, µ 3 λα1(a) + µ = ξ1, λα2(a) + µ = ξ2. Let b = λa+ µ. Then
b̂(α1) = ξ1, b̂(α2) = ξ2. Therefore Theorem 2.44 follows from the Stone–Weierstrass
theorem, since image of B is closed under conjugation by Proposition 2.42.

Definition 2.45. A Banach ∗ algebra B is
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(1) ∗ multiplicative if ‖a∗a‖ = ‖a∗‖ ‖a‖
(2) ∗ isometric if ‖a∗‖ = ‖a‖
(3) ∗ quadratic if ‖a∗a‖ = ‖a‖2

Remark 2.46. Conditions 1) and 2) in Definition 2.45 are equivalent to condition
3), i.e. ∗ is multiplicative & isometric iff ∗ is quadratic.

Proof. ⇒ clear.

⇐ ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖ ‖a‖
∴ ‖a‖ ≤ ‖a∗‖. This also holds for a∗

∴ ‖a‖ = ‖a∗‖.
So

‖a∗a‖ = ‖a‖2 = ‖a∗‖ ‖a‖.

Definition 2.47. A B∗ algebra is a quadratic ∗ algebra. [Nowadays, (2002), this
is called a C∗ algebra.]

Theorem 2.48. If B is a commutative B∗ algebra with identity, then the canonical
map is an isometric isomorphism onto C(B̃).

Lemma 2.49. If B is a commutative ∗–multiplicative Banach algebra with identity
then

‖a‖ = r(a) ∀a ∈ B.

Proof. If b is Hermitian, then ‖b2‖ = ‖b‖2, ‖b2n‖ = ‖b‖2n

. Hence r(b) = ‖b‖.
Let a be arbitrary. Since a∗a is Hermitian we have

r(a∗a) = ‖a∗a‖ = ‖a∗‖ ‖a‖
‖a∗‖ ‖a‖ = r(a∗a) ≤ r(a∗)r(a) by Remark 2.36

So
‖a∗‖ ‖a‖ ≤ ‖a∗‖r(a).

Hence
‖a‖ ≤ r(a).

Since r(a) ≤ ‖a‖ by Remark 2.36 we have ‖a‖ = r(a).

Lemma 2.50. A commutative B∗ algebra with identity is symmetric and semi–
simple.

Proof. We will show that if a∗ = a then σ(a) real. As in Proposition 2.41 it
suffices to prove a− i is invertible, i.e., 1 + ia is invertible, i.e., 1 /∈ σ(−ia). This is
equivalent to λ+ 1 /∈ σ(λ− ia) for some real λ. But if λ+ 1 ∈ σ(λ− ia), then

(λ+ 1)2 ≤ ‖λ− ia‖2 = ‖(λ+ ia)(λ− ia)‖ = ‖λ2 + a2‖ ≤ λ2 + ‖a2‖.
Hence 2λ + 1 ≤ ‖a2‖. But, this inequality fails for λ large enough. The semi–
simplicity follows from Lemma 2.49 and Remark (15).

Proof of Theorem 2.48. By Lemma 2.50 and Theorem 2.44 the image of B
is dense in C(B) under the canonical map. By Lemma 2.49, the image is complete,
hence closed, hence equal to C(B̃) and the canonical map is therefore an isometric
isomorphism onto C(B̃).
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Corollary 2.51. A commutative B∗ algebra with identity is isometrically isomor-
phic to the algebra of complex valued continuous functions on a compact Hausdorff
space.

2.3. Exercises. In each of the following two problems a commutative ∗ algebra A
with identity is given. In each case

(1) Find the spectrum of A.
(2) Determine whether A is semi–simple or symmetric or a B∗ algebra, or

several of these.
(3) Determine whether the Gelfand map is one to one, or onto or both or

neither or has dense range.

Exercise 2.4. A = all 2× 2 complex matrices of the form A =
(
a b
0 a

)
. Define

A∗ =
(
a b
0 a

)
. Define ‖A‖ to be the operator norm where C2 is given the norm∥∥(

c
d

)∥∥ = (|c|2 + |d|2)1/2.

Exercise 2.5. A = `1(Z) where Z is the set of all integers. For f and g in A define

(fg)(x) =
∞∑

n=−∞
f(x− n)g(n)

and f∗(x) = f(−x). Show first that A is a commutative ∗ Banach algebra with
identity. You may cite any results from Rudin’s “Real and Complex Analysis”.

Exercise 2.6. Let X be a compact Hausdorff space. Show that C(X) in sup norm
and pointwise multiplication is a B∗ algebra with respect to the ∗ operation given
by f∗(x) = f(x). For each x ∈ X let

αx(f) = f(x), f ∈ C(X).

Prove that the map x→ αx is a homeomorphism of X onto the spectrum of C(X).

Exercise 2.7. Using the previous problem show that if X and Y are compact
Hausdorff spaces and ϕ : C(X) → C(Y ) is an algebraic, ∗ preserving, isomorphism
of these algebras then there exists a unique homeomorphism T : Y → X which
induces ϕ. I.e., such that

(ϕf)(y) = f(Ty), y ∈ Y, f ∈ C(X).

Exercise 2.8. If A is an n–dimensional commutative B∗ algebra with identity
show that the spectrum of A consists of exactly n points (n <∞).
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3. The Spectral Theorem

Let A be a bounded operator on a complex Hilbert space H. If y is in H, the
map x → (Ax, y) is a continuous linear functional on H. Hence, by the Riesz
representation theorem, there exists a unique element z in H such that (Ax, y) =
(x, z) for all x in H. Define A∗ by A∗y = z. Thus A∗ is defined for all y in H and
satisfies

(3.1) (Ax, y) = (x,A∗y) x, y ∈ H.

If α, β are scalars then for all x

(x,A∗(αy1 + βy2)) = (Ax, αy + βy2) by (3.1)

= α(Ax, y1) + β(Ax, y2)

= (x, αA∗y1 + βA∗y2) by (3.1) again.

Therefore A∗ is linear.
Put x = A∗y in (3.1) to get

‖A∗y‖2 = (AA∗y, y) ≤ ‖A‖ ‖A∗y‖ ‖y‖

Therefore
‖A∗y‖ ≤ ‖A‖ ‖y‖.

Hence A∗ is bounded with ‖A∗‖ ≤ ‖A‖. Now A∗ is uniquely determined by equation
(3.1) and taking the complex conjugate of (3.1), we see A∗∗ = A. Hence ‖A‖ ≤
‖A∗‖. Thus we have the following properties.

Properties 3.1. (1) A∗ is linear and bounded and ‖A∗‖ = ‖A‖
(2) A∗∗ = A
(3) (αA+ βB)∗ = αA∗ + βB∗ (exercise).
(4) a) ‖AB‖ ≤ ‖A‖ ‖B‖

b) (AB)∗ = B∗A∗

(5) ‖A∗A‖ = ‖A‖2. Proof: ‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2. Also ‖Ax‖2 =
(A∗Ax, x) ≤ ‖A∗A‖ ‖x‖2. Therefore ‖A‖2 ≤ ‖A∗A‖.

Terminology: A∗ is called the adjoint of A.
(6) Recall: The set B(X) of all bounded operators on X is a Banach algebra

in operator norm whenever X is a Banach space.

Definition 3.2. A C∗ algebra on a Hilbert space is a subalgebra A of B(H) which
is closed in norm and such that A ∈ A ⇒ A∗ ∈ A. A subalgebra closed under
taking adjoints is called a ∗ subalgebra of B(H).

Example 3.3. B(H) is a C∗ algebra.

Definition 3.4. A maximal abelian self–adjoint (m.a.s.a.) algebra on H is a com-
mutative algebra A ⊂ B(H) which is not contained in any larger commutative
subalgebra and such that A is a ∗ subalgebra.

Notation 3.5. If S ⊂ B(H) then S′ = {A ∈ B(H), AB = BA ∀B ∈ S}. S′ is
clearly a subalgebra of B(H) for any set S. S′ is called the commutor algebra of S.

Proposition 3.6. Let H be a Hilbert space.
(1) A subalgebra A ⊂ B(H) is a maximal abelian algebra iff A′ = A.
(2) A m.a.s.a. algebra A is a C∗ algebra.
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Proof.
(1) Suppose A is m.a. Suppose B ∈ A′. Then the set of all operators of the

form A0 + A1B + A2B
2 + · · · + AnB

n. Aj ∈ A is a commutative algebra
containing A. Therefore it is A ∴ B ∈ A ∴ A′ ⊂ A. Clearly A ⊂ A′
since A is commutative. Therefore A′ = A.

Conversely, if A′ = A then since any larger commutative algebra C
containing A is contained in A′, it follows that C = A. Therefore A is m.a.

(2) If An ∈ A and An → A in norm then for any B ∈ A, AB − BA =
lim(AnB −BAn) = 0. Therefore A ∈ A′ = A.

Example 3.7. Let (X,µ) be a measure space. Let f ∈ L∞(µ). Define Mf :
L2(µ) → L2(µ) by Mfg = fg. Then clearly, since fg ∈ L2 when g is in L2, Mf is
everywhere defined and

‖Mfg‖22 =
∫
|fg|2dµ ≤ ‖f‖2∞‖g‖22

Therefore ‖Mf‖ ≤ ‖f‖∞. Note Mfg = MfMg, Mαf+βg = αMf +βMg, M∗
f = Mf .

Assumption 1. Assume that every measurable set in X of positive measure con-
tains a subset of finite strictly positive measure. (We say µ has no infinite atoms.)

Lemma 3.8. Under Assumption 1, ‖Mf‖ = ‖f‖∞.

Proof. Can assume ‖f‖∞ > 0. Suppose 0 < a < ‖f‖∞. Then µ({x : |f(x)| >
a}) > 0. Therefore there exists a measurable set S of finite positive measure
3 |f(x)| > a on S. Then ‖MfχS‖22 =

∫
|f(x)|2χ2

Sdµ ≥ a2
∫
χ2

Sdµ = a2‖χS‖22.
Therefore ‖Mf‖ ≥ a. Hence ‖Mf‖ ≥ ‖f‖∞.

Definition 3.9. Let (X,µ) be a measure space. The multiplication algebra (de-
noted by M(X,µ)) of (X,µ) is the algebra of operators on L2(X,µ) consisting of
all Mf , f ∈ L∞.

Proposition 3.10. If (X,µ) is a σ–finite measure space, then M(X,µ) is a
m.a.s.a. algebra.

Proof. Assume first µ(X) < ∞. Write M = M(X,µ) and assume T ∈ M′.
Let g = T (1). If f ∈ L∞ then TMf1 = MfT1. Therefore T (f) = fg. Thus
Tf = Mgf for f in L∞. The proof in the preceding example shows ‖g‖∞ ≤ ‖T‖.
Since Mg is bounded the equation T | L∞ = Mg | L∞, already established, extends
by continuity to L2. Hence T ∈ M and M is maximal abelian. Since M∗

g = Mg,
M is self–adjoint.

In the general case, write X = ∪∞j=1Xj , where the Xj are disjoint subsets of finite
measure. If T is in M′ it commutes with Mχ

Xj
and therefore leaves invariant the

subspace L2(Xj) which we identify with {f ∈ L2(X) : f = 0 off Xj}. Apply the
finite measure case and piece together the result to get the general case.

Definition 3.11. Let D(w, ε) = {z ∈ C : |z − w| < ε}, then if f ∈ L∞(X,µ) the
essential range of f is

{w ∈ C : µ(f−1(D(w, ε))) > 0 for all ε > 0}.

Exercise 3.1. Prove that the spectrum of Mf = essential range of f when X has
no infinite atoms.
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Definition 3.12. If A is a subalgebra of B(H) a vector x in H is called a cyclic
vector for A if Ax ≡ {Ax : A ∈ A} is dense in H.

Remark 3.13. Let A be any ∗ subalgebra of B(H). Suppose K is a closed subspace
of H and P is the projection on K. Then K is invariant under A iff P ∈ A′.

Proof. (⇐) If P ∈ A′, x ∈ K then Ax = APx = PAx ∈ K.
(⇒) If AK ⊂ K then APx ∈ K. ∴ APx = PAPx. Also, A∗ ∈ A. So

A∗P = PA∗P . Therefore PA = P ∗A = (A∗P )∗ = (PA∗P )∗ = PAP = AP . Hence
P ∈ A′.

Lemma 3.14. If H is separable and A is a m.a.s.a. on H then A has a cyclic
vector.

Proof. For any x ∈ H, let Ax be the closed subspace containing Ax. Since
I ∈ A, x ∈ Ax. Since Ax is invariant under A, so is Ax. Note that if y ⊥ Ax then
Ay ⊥ Ax since (Ay,Bx) = (y,A∗Bx) = 0. Let E = {xα} be an orthonormal set
such that Axα ⊥ Axβ if α 6= β. Such sets exist (e.g. singletons). Zorn’s lemma
gives us a maximal such set. For this E, H = closed spanα{Axα} for otherwise we
could adjoin to E any unit vector in (span{Axα})⊥. Now, since H is separable, E is
countable; E = {x1, x2, . . .} put z =

∑∞
n=1 2−nxn. Claim: z is a cyclic vector for A.

The projection Pn onto Axn is in A′ by the above remark. Therefore Pn ∈ A = A′.
∴ Az ⊃ APnz = A2−nxn = Axn ∀n
∴ Az ⊃ closed spann{Axn} = H.

Definition 3.15. A unitary operator U from Hilbert space H to Hilbert space
K is a linear operator from H onto K such that ‖Ux‖ = ‖x‖ ∀x ∈ H. We may
emphasize that U : H → K is surjective by writing U : H � K.

Theorem 3.16. Let A be a m.a.s.a. on separable Hilbert space H. Then there
exists finite measure space (X,µ) and a unitary operator U : H � L2(X,µ) such
that UAU−1 = M(X,µ).

Proof. Let z be a unit cyclic vector for A. Then z is also a separating vector
for A (i.e., if A ∈ A and Az = 0 then A = 0) since if Az = 0 then ∀ B ∈ A,
ABz = BAz = 0. Therefore AAz = 0. But Az is dense. ∴ A = 0. We have seen
that A is a B∗ algebra. Let X = spectrum(A). Then the Gelfand map A → Â is
an isometric isomorphism A � C(X).

Define Λ on C(X) by
Λ(Â) = (Az, z)

Λ is clearly a bounded linear functional on C(X). Indeed, |Λ(Â)| ≤ ‖A‖ = ‖Â‖. Λ
is positive since

Λ(ÂÂ) = (A∗Az, z) = ‖Az‖2 ≥ 0
Therefore there exists a unique regular Borel measure µ on X such that

Λ(Â) =
∫
Âdµ

µ(X) is finite because µ(X) =
∫

1dµ = Λ(1) = ‖z‖2 = 1. Define U0 on Az by

U0Az = Â.
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U0 is well defined since Az = 0 ⇒ A = 0. U0 is thus linear and densely defined.
Moreover

‖U0Az‖2 =
∫
ÂÂdµ = Λ(Â∗A) = (Az,Az) = ‖Az‖2.

Hence U0 is isometric from Az into L2(X,µ). Since U0 is continuous it extends by
continuity to an operator U : H → L2(X,µ) such that

‖Ux‖ = ‖x‖ ∀x ∈ H

Since range(U) is a complete (therefore closed) subspace of L2(µ) which contains
C(X) it is all of L2(µ).

Now, if A,B ∈ A then

UAU−1B̂ = UABz = ÂB = M bAB̂
Therefore

(3.2) UAU−1 = M bA
on a dense set and thus, on all of L2(µ).

Let N = UAU−1 and let M be the multiplication algebra of (X,µ). Clearly
N ⊂M by (3.2).

If T ∈M then T ∈ N ′, therefore U−1TU ∈ A′. But A′ = A

∴ U−1TU ∈ A
∴ T ∈ N
∴ M = N .

Definition 3.17. A bounded operator A : H → H is
(1) normal if A∗A = AA∗

(2) Hermitian if A = A∗

(3) unitary if A is onto and ‖Ax‖ = ‖x‖ ∀x ∈ H
(4) orthogonal if H is real and A is unitary.

Proposition 3.18. Let H be a Hilbert space. Suppose A : H → H is linear and
(Ax, x) = 0 ∀x ∈ H then

(a) if H is complex then A = 0
(b) if H is real and A∗ = A then A = 0.

Proof. Polarization identity :

(A(x+ y), x+ y)− (A(x− y), (x− y)) = 2(Ax, y) + 2(Ay, x)

Therefore

(3.3) (Ax, y) + (Ay, x) = 0 ∀x, y

If H is real and A∗ = A then

(Ay, x) = (y,Ax) = (Ax, y).

Therefore (Ax, y) = 0 ∀x, y. ∴ Ax = 0, ∀x.
If H is complex, replace x by ix in (3.3) to get

i(Ax, y)− i(Ay, x) = 0
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Divide by i and add to (3.3) to get:

(Ax, y) = 0 ∀x, y ∴ Ax = 0 ∀x.

Corollary 3.19. An operator U : H → H is unitary iff U is bounded and

(3.4) U∗U = UU∗ = I

Proof. Assume U is bounded and that (3.4) holds. Then ‖Ux‖2 = (U∗Ux, x) =
‖x‖2. Since U(U∗x) = x, U is onto. Therefore U is unitary.

Assume U is unitary. Then

((U∗U − I)x, x) = ‖Ux‖2 − ‖x‖2 = 0

Therefore U∗U − I = 0. Since U is onto, (∀x ∈ H)(∃y ∈ H)(x = Uy). Therefore
UU∗x = UU∗Uy = Uy = x. ∴ UU∗ = I.

Proposition 3.20. Let (X,µ) be a σ–finite measure space. Let f ∈ L∞. Then

(1) Mf is normal
(2) (Mf is Hermitian) ↔ (f is real a.e.)
(3) (Mf is unitary) ↔ (|f | = 1 a.e.)

Proof. (1) M∗
fMf = MfMf = Mff = MfM

∗
f . Therefore Mf normal.

(2) (M∗
f = Mf ) ↔ (Mf = Mf ) ↔ (f = f a.e.)

(3) (M∗
fMf = I) ↔ (Mff = M1) ↔ (ff = 1 a.e.)

Theorem 3.21 (Spectral Theorem). Let {Aα}α∈I be a family of bounded nor-
mal operators on a complex separable Hilbert space. Assume that the family is a
commuting set in the sense that:

AαAβ = AβAα ∀α, β

and

AαA
∗
β = A∗βAα ∀α, β

Then there exists a finite measure space (X,µ) and a unitary operator U : H →
L2(X,µ) and for each α there exists a function fα ∈ L∞ such that

UAαU
−1 = Mfα .

Proof. Let A0 be the algebra generated by the {Aα, A
∗
α}α∈I . Then A0 is

a commutative ∗ algebra. Order the set of all commutative self-adjoint algebras
containing A0 by inclusion. By Zorn’s lemma there exists a largest such algebra,
A. We assert that A = A′. Indeed if B ∈ A′ then B∗ ∈ A′ also because A is
self-adjoint. Hence C := B + B∗ ∈ A′. But the algebra generated by A and C is
commutative and self-adjoint. Therefore C ∈ A. Similarly i(B − B∗) ∈ A. Hence
B ∈ A. So A′ = A. Therefore A is maximal abelian and self-adjoint.

Now by the preceding theorem there exists (X,µ) with µ(X) = 1 and a unitary
U : H → L2(X) such that UAU−1 = M(X,µ). Therefore UAαU

−1 = Mfα
for

some fα ∈ L∞.
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3.1. Problems on the Spectral Theorem (Multiplication Operator Form).

Exercise 3.2. If A is a Hermitian operator on an n–dimensional unitary space
(n < ∞) V prove that there is an orthonormal basis of V which diagonalizes
A by applying the theorem that a m.a.s.a. algebra is unitarily equivalent to a
multiplication algebra.

Exercise 3.3. Let H be a Hilbert space with O. N. basis e1, e2, . . . . Let θj be a
sequence of real numbers in (0, π/2). Let

xj = (cos θj)e2j + (sin θj)e2j−1 j = 1, 2, . . .

and
yj = −(cos θj)e2j + (sin θj)e2j−1 j = 1, 2 . . . .

Let

M1 = closedspan {xj}∞j=1 and

M2 = closedspan {yj}∞j=1.

(1) Show that the closed span of M1 and M2 (i.e., the closure of M1 +M2) is
all of H.

(2) Show that if θj = 1/j then the vector

z =
∞∑

j=1

j−1e2j−1

is not in M1 +M2, so that M1 +M2 6= H.

Exercise 3.4. Let

H = `2(Z) = {all square summable 2−sided complex sequences a with ‖a‖2 =
∞∑

j=−∞
|aj |2}.

Define U : H → L2(−π, π) by

(Ua)(θ) =
1√
2π

∞∑
n=−∞

ane
inθ.

It is well known that U is unitary. For f in `1(Z) define

(Cfa)n =
∞∑

k=−∞

f(n− k)ak.

(1) Show that Cf is a bounded operator on H.
(2) Find C∗f explicitly and show that Cf is normal for any f in `1(Z).
(3) Show that UCfU

−1 is a multiplication operator.
(4) Find the spectrum of Cf , where

f(j) =
{

1 if |j| = 1
0 otherwise .

Exercise 3.5. Define f on [0, 1] by

f(x) =
{

2 if x is rational
x if x is irrational .

Find the spectrum of Mf as an operator on L2(0, 1).
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Exercise 3.6. Find a bounded Hermitian operator A with both of the following
properties:

(1) A has no eigenvectors
(2) σ(A) is set of Lebesgue measure zero in R.

Hint 1: Such an operator is said to have singular continuous spectrum.
Hint 2: Consider the Cantor set. See Rudin, 3rd Edition, Section 7.16.

3.2. Integration with respect to a Projection Valued Measure. We now
study a second form of the spectral theorem.

Definition 3.22. A sequence An of bounded operators on a Banach space B con-
verges strongly to a bounded operator A if Anx→ Ax for each x ∈ B. An converges
weakly if 〈Anx, y〉 → 〈Ax, y〉 ∀x ∈ B, y ∈ B∗. If B is a Hilbert space weak conver-
gence is equivalently defined as (Anx, y) → (Ax, y) ∀x, y ∈ H.

Definition 3.23. If P and Q are two projections in H, then P is called orthogonal
to Q if R(P ) ⊥ R(Q).

Proposition 3.24. A bounded operator P with range M is the orthogonal projec-
tion onto M iff P 2 = P and P ∗ = P .

Proof. We already know that the orthogonal projection onto a closed subspace
M has these properties. Suppose then that P 2 = P and P ∗ = P and M = range
P . If x ∈M then x = Py for some y. Hence: Px = P 2y = Py = x. So P |M = I
on M . M is closed, for if xn ∈ M and xn → x then Px = limPxn = limxn = x.
Hence x ∈M . It remains to show that N (P ) = M⊥.

If x ∈ M and Py = 0 then (x, y) = (Px, y) = (x, Py) = 0. Therefore N ⊂ M⊥.
If y ∈ M⊥ then ∀x ∈ H, (Px, y) = 0. Therefore (x, Py) = 0 ∀x ∈ H. Therefore
Py = 0. So y ∈ N .

Note: Henceforth projection means “orthogonal projection”.

Corollary 3.25. If P1, P2 are two projections with ranges M1, M2, respectively,
then

a) M1 ⊥M2 ⇒ P1P2 = P2P1 = 0
b) P1P2 = 0 ⇒M1 ⊥M2

c) In case of a) or b) P1 + P2 is the projection onto span {M1,M2}.

Proof. a) Assume M1 ⊥ M2. For any x ∈ H, P1x ∈ M1 ⊂ M⊥
2 = N (P2).

Therefore P2P1x = 0, etc.
b) Assume P1P2 = 0. If x ∈M1, y ∈M2 then (x, y) = (P1x, P2y) = (x, P1P2y) =

0. Therefore M1 ⊥M2.
c) Assume P1P2 = 0. Then (P1 + P2)2 = P 2

1 + P1P2 + P2P1 + P 2
2 = P1 + P2.

Clearly (P1 + P2)∗ = P1 + P2. Therefore P = P1 + P2 is the projection onto
some closed subspace M . If x ∈ M1, y ∈ M2 then P (x + y) = P1x + P2x +
P1y + P2y = P1x + P2y = x + y. Therefore M ⊇ M1 + M2. If z ∈ M , then
z = Pz = P1z + P2z ∈M1 +M2.

Proposition 3.26. If Pn is a sequence of mutually orthogonal projections, then
strong limn→∞

∑n
k=1 Pk exists and is the projection onto the closure of span

{R(Pn)}∞n=1.

Proof. Let Qn =
∑n

k=1 Pk.
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Now Qn is the projection on M1 + · · · + Mn where Mj = R(Pj) by Corollary
3.25 and induction. Therefore ‖Qnx‖2 5 ‖x‖2 ∀x, i.e.,

‖x‖2 =
∥∥∥ n∑

k=1

Pkx
∥∥∥2

=
( n∑

k=1

Pkx,
n∑

j=1

Pjx
)

=
n∑

k=1

‖Pkx‖2.

Hence the series
∑∞

k=1 ‖Pkx‖2 converges and is 5 ‖x‖2. But if n > m,

‖(Qn −Qm)x‖2 =
n∑

k=m+1

‖Pkx‖2.

Therefore ‖(Qn − Qm)x‖ → 0 as n,m → ∞. Hence Qnx converges as n → ∞.
Call the limit Qx. Q is clearly a bounded linear operator and ‖Q‖ 5 1. Moreover
(Qx, y) = lim(Qnx, y) = lim(x,Qny) = (x,Qy). Therefore Q∗ = Q. Note that
QmQn = Qm if n = m.

∴ (Q2x, y) = lim
m

(QmQx, y) = lim
m

lim
n

(QmQnx, y) = lim
m

(Qmx, y) = (Qx, y) ∀x, y.

∴ Q2 = Q.

Thus Q is the projection on some closed subspace M . If x ∈Mk, then Qnx = x
for n = k. Therefore Qx = x.

∴ Mk ⊂M ∴ M ⊃ span{Mn} ≡ N.

If x ⊥ N , then x ⊥Mj ∀j. Therefore Qnx = 0 ∀n. Therefore Qx = 0. ∴ x ⊥M ,
i.e., N⊥ ⊂M⊥, ∴ N ⊃M .

Definition 3.27. Let X be a set and let S be a σ–field in X. A projection valued
measure on S is a function E(·) from S to projections on a Hilbert space H such
that

(1) E(∅) = 0
(2) E(X) = I
(3) E(A ∩B) = E(A)E(B) where A,B ∈ S
(4) If A1, A2, . . . is a disjoint sequence in S then

E(∪∞n=1An) =
∞∑

n=1

E(An)(strong sum)

Remarks 3.28. (1) and (3) in Definition 3.27 imply that if A ∩ B = ∅ then E(A)
and E(B) are mutually orthogonal. Hence the strong sum in (4) of Definition 3.27
converges to a projection by Proposition 3.26.

Example 3.29. Let (Y, µ) be a measure space. Let f be a complex valued measur-
able function on Y . For any Borel set A ⊆ C, define E(A) = Mχf−1(A)

on L2(Y, µ).
It is straightforward to verify that E(·) is a projection valued measure on the Borel
sets.

Let (X,S) be a measurable space and E(·) a projection valued measure on S
with values in B(H).

Note: If x, y ∈ H, then B → (E(B)x, y) is a complex measure on S.
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Definition 3.30. If f =
∑n

j=1 ajχBj
is a simple complex valued measurable func-

tion on X, let ∫
fdE =

n∑
j=1

ajE(Bj).

Properties 3.31. Properties of
∫

: If f is simple, then
(1)

∫
fdE is well defined because the corresponding bilinear form (

∫
fdEx, y) =∫

fd(Ex, y) is well defined.
(2) ‖

∫
fdE‖ ≤ sups∈X |f(s)|.

(3)
∫
αf + βgdE = α

∫
fdE + β

∫
gdE.

(4) If g is also simple then∫
fgdE =

( ∫
fdE

)( ∫
gdE

)
.

(5)
∫
fdE = (

∫
fdE)∗.

Proof. 2) Write f =
∑
ajχBj

where Bi ∩Bj = ∅ if i 6= j. Then∥∥∥( ∫
fdE

)
x
∥∥∥2

=
∥∥∥∑

j

ajE(Bj)x
∥∥∥2

=
∑
ij

(aiE(Bi)x, ajE(Bj)x)∑
ij

aiaj(E(Bj)E(Bi)x, x) =
∑

j

|aj |2(E(Bj)x, x)

≤ (max |aj |2)
∑

j

(E(Bj)x, x) =
(

sup
s∈X

|f(s)|2
)
(E(∪Bj)x, x)

≤ sup |f(s)|2‖x‖2

3) The bilinear forms of both sides are the integrals with respect to a complex
measure.

4) If g =
∑n

j=1 bjχCj and f =
∑m

j=1 ajχBj , then by taking a common refinement
of the {Bj} and {Cj}, we may assume that Bj = Cj and Bi∩Bj = ∅ if i 6= j. Then∫

fgdE =
∑

ajbjE(Bj) =
( ∑

ajE(Bj)
)( ∑

biE(Bi)
)
.

Definition 3.32. If f is a bounded measurable function, let fn be a sequence of
simple measurable functions converging to f uniformly. Then by (2) of Property
3.31 ∥∥∥∫

fndE −
∫
fmdE

∥∥∥ → 0 as n,m→∞.

Define
∫
fdE = lim inf

∫
fndE (in operator norm).

Properties (1)–(4)of Property 3.31 hold for a bounded measurable f – the proofs
are straightforward.

Remark 3.33. If H, K are Hilbert spaces and A : H → K is bounded linear then
A∗ : K → H can be defined by (Ax, y) = (x,A∗y), x ∈ H, y ∈ K just as if K = H.
Usual properties hold:

(AB)∗ = B∗A∗

A∗∗ = A, etc.
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Definition 3.34. A projection valued measure E(·) on the Borel sets in C is
supported in a closed set K if E(Kc) = 0. The support set of E is the complement
of ∪{V | E(V ) = 0, V open}.

Note: If E has compact support, define∫
C
zdE =

∫
K

zdE.

(This is clearly well defined.)

Example 3.35. Resume notation from Example 3.29. Assume f is bounded. Then
E(·) has compact support and ∫

C
zdE = Mf .

Exercise 3.7. Prove the assertions in Example 3.35. Verify first that E(·) is indeed
a projection valued measure.

Theorem 3.36 (Spectral Theorem). Let A be a bounded normal operator on a
separable Hilbert space H. There exists a unique projection valued Borel measure
E on C with compact support such that

A =
∫

C
zdE.

Furthermore if D is any bounded operator on H then D commutes with A and
A∗ iff D commutes with E(B) for all Borel sets B.

Proof. Existence: By the form of the spectral theorem given on page 24, there
exists a measure space (X,µ) and a unitary operator U : H → L2(X,µ) such that

UAU−1 = Mf

where f is a bounded measurable function on X. If B is a measurable set in X, let
G(B) = Mχf−1(B)

.
In view of Examples 3.29 and 3.35, we see that G(·) is a projection valued

measure with compact support in C and∫
C
zdG = Mf .

Let E(B) = U−1G(B)U = U∗G(B)U . Then one sees easily that E(·) is also a
projection valued measure on C with compact support. If h is a simple function on
C (say h =

∑
ajχBj

) then∫
h(z)dE(z) =

∑
ajE(Bj) = U−1

( ∑
ajG(Bj)

)
U = U−1

∫
h(z)dG(z)U.

Taking uniform limits, we see that

(3.5)
∫
h(z)dE(z) = U−1

∫
h(z)dG(z)U.

holds for all bounded measurable h. In particular, since E has compact support,
we may take h(z) = z and obtain∫

zdE(z) = U−1MfU = A.
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Uniqueness: Suppose that F (·) is another projection valued Borel measure on C
with compact support, such that A =

∫
zdF (z). We wish to show E = F . Let K

be a compact set in C containing the supports of E and F . By (1)– (5) of Property
3.31, we have

(3.6) p(A,A∗) =
∫
p(z, z)dE(z)

for any polynomial p(·) in the commuting operators A and A∗. (Note that
(
∫
fdE)∗ =

∫
fdE must be used here.) Since these polynomials are dense in C(K)

in sup norm (by Stone–Weierstrass theorem) it follows that

(3.7)
∫

K

f(x, y)dE(z) =
∫

K

f(x, y)dF (z)

for any f in C(K) because (3.6) implies its validity for polynomials. Now let u and
v be in H. Then

(3.8)
∫

K

fd(E(z)u, v) =
∫

K

fd(F (z)u, v)

for all f ∈ C(K). Hence the two complex measures B → (E(B)u, v) and B →
(F (B)u, v) are equal since the dual space of C(K) is the space of complex measures
on K. Thus for any Borel set B, ((E(B) − F (B))u, v) = 0 ∀u, v ∈ H. Thus
E(B) = F (B), proving uniqueness.

For the final assertion of the theorem, suppose that DE(B) = E(B)D ∀ Borel
sets B. Then D commutes with all operators of the form ΣajE(Bj) and with their
uniform limits. In particular, D commutes with A =

∫
zdE and A∗ =

∫
zdE.

Conversely, suppose that D commutes with both A and A∗. Then D commutes
with all polynomials p(A,A∗), and hence with their uniform limits. Thus if support
E = K then D commutes with

∫
K
fdE for any f in C(K). If u and v are in H,

then (( ∫
K

fdE
)
Du, v

)
=

(( ∫
K

fdE
)
u,D∗v

)
.

That is, ∫
K

f(z)d(E(z)Du, v) =
∫
f(z)d(E(z)u,D∗v).

Hence, just as in the uniqueness proof, it follows that for any Borel set B,

(E(B)Du, v) = (E(B)u,D∗v) for all u, v ∈ H.

That is
((E(B)D −DE(B))u, v) = 0 for all u, v ∈ H

and therefore E(B)D = DE(B).

Definition 3.37. The projection valued measure E(·) appearing in the preceding
theorem is called the spectral resolution of A.

Corollary 3.38. If A is a bounded normal operator on H with spectral resolution
E(·) then support E = σ(A).

Proof. From the construction of E, we see that the support of E is the essential
range of f . But essential range of f = σ(Mf ) = σ(A) since unitary equivalences
preserve spectrum.
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Corollary 3.39. A point λ ∈ C is an eigenvalue for A iff λ is an atom for E.
Moreover if λ is an eigenvalue for A then RE({λ}) is the corresponding eigenspace.

Proof. Assume E({λ}) 6= 0. Let x ∈ RE({λ}), x 6= 0. Then E(F )x = 0 if
λ /∈ F , and so

‖(A− λ)x‖2 = ((A− λ)∗(A− λ)x, x)

=
∫

C
|z − λ|2d(E(·)x, x) =

∫
{λ}

|z − λ|2d(E(·)x, x) = 0(3.9)

Hence x is an eigenvector for A with eigenvalue λ. Conversely, if there exists x 6= 0
such that Ax = λx then (3.9) shows that∫

C
|z − λ|2d(E(·)x, x) = 0.

This implies that (E(F )x, x) = 0 if λ /∈ F . But (E(C)x, x) = ‖x‖2 6= 0, and hence
(E({λ}x, x) = ‖x‖2. Therefore E({λ}) 6= 0 and E({λ})x = x.

Lemma 3.40. For any bounded operator A, σ(A∗) = σ(A); further, if A is invert-
ible, then σ(A−1) = σ(A)−1.

The proof follows easily from the definitions of σ(A), A∗ and A−1.

Proposition 3.41. a) If A is Hermitian then σ(A) is real.
b) If U is unitary then σ(U) ⊂ {z : |z| = 1}.

Proof. (a) We have already proved this for a ∗ quadratic normed ∗ algebra.
But it also follows immediately from Lemma 3.40.

(b) ‖U‖ = 1 and so σ(U) ⊆ {z : |z| ≤ 1}. If 0 < |z| < 1 and z ∈ σ(U) then

z−1 ∈ σ(U−1) = σ(U∗) ⊂ {z : |z| ≤ 1},

a contradiction. Finally, it is clear that o /∈ σ(U).

Corollary 3.42 (Spectral theorem for a bounded Hermitian operator). If A is
a bounded Hermitian operator on a separable Hilbert space H, then there exists a
unique projection–valued Borel measure E(·) on the line with compact support such
that

A =
∫ ∞

−∞
λdE(λ).

For all real Borel sets B, E(B) ⊂ {A}′′.

Proof. σ(A) ⊂ (−∞,∞) by the proposition. Apply Corollary 3.38.

Corollary 3.43 (Spectral theorem for a unitary operator). If U is a unitary oper-
ator on a separable Hilbert space, then there exists a unique projection–valued Borel
measure E(·) on [0, 2π) such that

U =
∫ 2π

0

eiθdE(θ),

and E(B) ⊂ {U}′′ for all Borel sets B.

Proof. The same as for Corollary 3.42 if we map [0, 2π) onto {z : |z| = 1} with
θ → eiθ.
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Example 3.44. H = `2. If x = {an}∞n=1 ∈ `2, put

Ax =
{ 1
n
an

}∞
n=1

.

Then A is a bounded multiplication operator by a real function, and is hence
Hermitian.

σ(A) = {1, 1/2, 1/3, . . . , 0}.
Each point is an eigenvalue, except 0. The eigenvector corresponding to 1/n is

xn = (0, 0, . . . , 1, 0, . . .).

Definition 3.45. Let A be any bounded operator. The set σp(A) of all eigenvalues
of A is called the point spectrum of A. Let Hp be the closed subspace of H spanned
by the eigenvectors of A. If Hp = H then A is said to have pure point spectrum.

In Example 3.44 Hp = H but σp(A) 6= σ(A) since 0 /∈ σp(A).

Definition 3.46. If Hp = {0} then A is said to have purely continuous spectrum.

Example 3.47. H = L2(0, 1), A = Mx+2. Then A has no eigenvalues, as we have
seen before. Hence σp(A) = ∅. Thus A has purely continuous spectrum. Note that
σ(A) = [2, 3].

Example 3.48. Let Q = rationals in [0, 1] with the counting measure. Let A =
Mx+2. Then

σ(A) = ess. range of x+ 2 = [2, 3].
But every rational number in [2, 3] is an eigenvalue of A because the function

f(x) =
{

1 if x = r
0 if x 6= r, x ∈ [0, 1]

is an eigenfunction associated to the eigenvalue 2 + r if r is a rational in [0, 1].
Since these functions form an Orthonormal . basis of H we have Hp = H. Thus A
has pure point spectrum in spite of the fact that σ(A) = [2, 3], which is the same
spectrum as in Example 3.47.

Definition 3.49. 1) If A is a bounded Hermitian operator we write A ≥ 0 if
(Ax, x) ≥ 0 ∀x ∈ H.

2) If A and B are bounded Hermitian operators, we write A ≤ B if B −A ≥ 0.

Remark 3.50. The bounded Hermitian operators form a partially ordered set in
this ordering.

Exercise 3.8. Prove Remark 3.50.

Exercise 3.9 (Decomposition by spectral type). Let A be a bounded Hermitian
operator on a complex Hilbert space H. Suppose that A =

∫∞
−∞ λdE(λ) is its

spectral resolution. Denote by Hac the set of all vectors x in H such that the
measure B → ‖E(B)x‖2 is absolutely continuous with respect to Lebesgue measure.

(1) Show that Hac is a closed subspace of H.
(2) Show that Hp ⊥ Hac.
(3) Define Hsc = (Hp+Hac)⊥. (So we have the decomposition H = Hp⊕Hac⊕

Hsc.) Show that if x ∈ Hsc and x 6= 0 then the measure B → (E(B)x, x)
has no atoms and yet there exists a Borel set B of Lebesgue measure zero
such that E(B)x 6= 0.
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(4) Show that the decomposition of part c) reduces A. That is, AHi ⊂ Hi, for
i = p, ac, or sc.

Exercise 3.10 (Behavior of the resolvent near an isolated eigenvalue). We saw
in the proof of Theorem 1.12 in Chapter 2 that if A is a bounded operator on a
complex Banach space and λ0 is not in σ(A) then (A − λ)−1 has a power series
expansion: (A− λ)−1 =

∑∞
n=0(λ− λ0)nBn valid in some disk |λ− λ0| < ε, where

each Bn is a bounded operator.
(1) Suppose that A is the operator on the two dimensional Hilbert space C2

given by the two by two matrix

A =
(

3 1
0 3

)
.

As you (had better) know, σ(A) = {3}. Show that the resolvent (A− λ)−1

has a Laurent expansion near λ = 3 with a pole of order two. That is

(A− λ)−1 = (λ− 3)−2B−2 + (λ− 3)−1B−1 +
∞∑

n=0

(λ− λ0)nBn

which is valid in some punctured disk 0 < |λ− 3| < a. Find B−2 and B−1

and show that neither operator is zero.
(2) Suppose now that A is a bounded Hermitian operator on a complex, sepa-

rable, Hilbert space H. Suppose that λ0 is an isolated eigenvalue of A, by
which we mean that, for some ε > 0

σ(A) ∩ {λ ∈ C : |λ− λ0| < ε} = {λ0}.
Prove that (A− λ)−1 has a pole of order one around λ0, in the sense that,
for some δ > 0,

(A− λ)−1 = (λ− λ0)−1B−1 +
∞∑

n=0

(λ− λ0)nBn, 0 < |λ− λ0| < δ,

where the operators Bj , j = −1, 0, 1, . . . are bounded operators on H.
Express B−1 in terms of the spectral resolution of A.

3.3. The Functional Calculus. Let A be a bounded normal operator on a sepa-
rable complex Hilbert space H. Let

A =
∫

C
zdE(z)

be its spectral resolution. For any bounded complex Borel measurable function f
defined on σ(A), we define

f(A) =
∫

σ(A)

f(z)dE(z).

Definition 3.51. If f : σ(A) → C is a bounded Borel measurable function, then
the essential range of f with respect to the spectral resolution E(·) of A consists
of those λ ∈ C such that E(f−1(B)) 6= 0 for all open sets B containing λ.

Clearly the essential range of f is closed. Define F (B) = E(f−1(B)) for all Borel
sets E in C. Clearly F (·) is another projection valued measure in C with support
equal to the essential range of f (because for any open set B, F (B) = 0 iff B∩ ess.
range f = ∅).
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Properties 3.52. (1) If g is another such function and α and β are scalars,
then

a) (αf + βg)(A) = αf(A) + βg(A)
b) (fg)(A) = f(A)g(A).
Proof: These are properties 3 and 4 on page 27.

(2) If f(z) = zn, then f(A) = An. Proof: b) above and induction.
(3) If f : σ(A) → C is a bounded Borel measurable function, and F (B) =

E(f−1(B)), then

(3.10) f(A) =
∫

C
zdF(z).

Hence, F (·) is the spectral resolution of f(A).
Proof.: If h(z) =

∑n
j=1 ajχBj

is simple, then h(f(z)) =
∑n

j=1 ajχf−1(Bj)(z).
Hence ∫

h(z)dF (z) =
∑

ajE(f−1(Bj))

=
∫
h(f(z))dE(z).

Since any bounded Borel function g on ess. range f is a uniform limit
of simple functions, we may take the norm limit of both sides of the above
equation to obtain

(3.11)
∫
g(z)dF (z) =

∫
g(f(z))dE(z)

for any bounded measurable complex–valued function g on ess. range f .
In particular, putting g(z) = z yields Eq. (3.10).

(4) σ(f(A)) = ess. range f if f : σ(A) → C is a bounded complex–valued Borel
function.

Proof: σ(f(A)) = supp F by (3.10) and Corollary 3.38. But supp F =
ess. range of f .

(5) If g : ess. range f → C is a bounded complex–valued Borel function, then
(g ◦ f)(A) = g(f(A)).

Proof:

(g ◦ f)(A) =
∫

(g ◦ f)(z)dE(z) by definition

=
∫
g(z)dF (z) by (3.11)

Corollary 3.53. If A is a bounded Hermitian operator and A ≥ 0 then

(a) σ(A) ⊂ [0,∞)
(b) the support of the spectral resolution of A is contained in [0,∞)
(c) A has a unique positive square root C (that is, there is a unique positive

(and a fortiori Hermitian) operator C such that C2 = A).

Proof. a) and b) are equivalent by Corollary 3.38. We prove b). Suppose
E((−∞, 0)) 6= 0. Let x ∈ range E((−∞, 0)). Then the Borel measure that takes B
to (E(B)x, x) is supported in (−∞, 0) in the sense that (E(B)x, x) = 0 if B ⊂ [0,∞)
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and (E(B)(x), x) > 0 for some B ⊂ (−∞, 0). Hence

(Ax, x) =
∫ ∞

−∞
λd(E(λ)x, x) =

∫ 0

−∞
λd(E(λ)x, x) < 0,

contradicting A ≥ 0.
To prove c), let f(λ) = λ1/2 for λ ≥ 0. Since σ(A) ⊂ [0,∞), C = f(A) is

well–defined. Since range f ⊂ [0,∞), σ(C) ⊂ [0,∞). The spectral theorem implies
C ≥ 0. Suppose D is another positive (hence Hermitian) square root of A. Let
g(λ) = λ2. Then (f ◦ g)(λ) = λ. Hence

D = (f ◦ g)(D) = f(g(D)) by (5) in Property 3.52

= f(A) by (2) in Property 3.52
= C.

Definition 3.54. A one parameter unitary group is a function U : R → unitary
operators on a Hilbert space H such that

U(t+ s) = U(t)U(s) for all real t and s.

Exercise 3.11. Let A be a bounded Hermitian operator on a separable Hilbert
space H. Denote by E(·) its spectral resolution. Assume that A ≥ 0 and write
P = E({0}) (which may or may not be the zero projection). Prove that for any
vector u in H

lim
t→+∞

e−tAu = Pu.

Exercise 3.12. Let V be a unitary operator on a separable complex Hilbert space
H. Prove that there exists a one parameter group U(t) on H such that

(a) U(1) = V
(b) U(·) is continuous in the operator norm.
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4. Unbounded Operators

4.1. Closed, symmetric and self-adjoint operators.

Definition 4.1. If X and Y are Banach spaces and D is a subspace of X, then a
linear transformation T from D into Y is called a linear transformation (or operator)
from X to Y with domain D. If D is dense in X, T is said to be densely defined.

Notation 4.2. If S and T are operators from X to Y with domains DS and DT

and if DS ⊂ DT and Sx = Tx for x ∈ DS , then we say T is an extension of S and
write S ⊂ T .

We note that X × Y is a Banach space in the norm

‖〈x, y〉‖ =
√
‖x‖2 + ‖y‖2.

If X and Y are Hilbert spaces then X × Y is a Hilbert space in this norm with
inner product

(〈x, y〉, 〈x′, y′〉) = (x, x′) + (y, y′).

Definition 4.3. If T is an operator from X to Y with domain D, the graph of T
is

GT = {〈x, Tx〉 : x ∈ D}.
Note that GT is a subspace of X × Y .

Definition 4.4. T is closed if GT is closed in X × Y .

It is easy to see that T is closed iff

xn → x

xn ∈ D ⇒ x ∈ D and Tx = y

Txn → y

Recall:

Theorem 4.5 (Closed Graph Theorem). If T : XBan → Y Ban is closed and
everywhere defined and linear, then T is bounded. (See Rudin, Chapter 5, Problem
16. The solution to this problem depends on Theorem 5.10 of Rudin.)

Moral: Unbounded closed operators cannot be everywhere defined.

Exercise 4.1. Suppose that (X,µ) is a measure space and that µ(X) < ∞. Let
T : L2(µ) → L2(µ) be a bounded operator. Suppose that range T is contained in
L5(µ). Show that T is bounded as an operator from L2(µ) into L5(µ). Hint: Use
the closed graph theorem.

Definition 4.6. Let H be a Hilbert space. Let T : H → H be linear and densely
defined with domain D. Define DT∗ as follows: y ∈ DT∗ ⇔ the map x → (Tx, y)
is continuous from D to C. For such y there exists a unique y∗ ∈ H such that
(Tx, y) = (x, y∗). We define T ∗y = y∗. Thus

(Tx, y) = (x, T ∗y) ∀x ∈ DT , y ∈ DT∗ .

Properties 4.7. DT∗ is a linear subspace. T ∗ is linear. (Same proof as for bounded
case.) Even though DT is dense, DT∗ need not be dense.

Exercise 4.2. Let H = L2(0, 1), D = C([0, 1]). Let (Tf)(x) ≡ f(0) = constant
function. Then T is densely defined. T : D → H. Prove that DT∗ is not dense.
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Definition 4.8. If A and B are operators on H define A + B on DA ∩ DB by
(A+B)x = Ax+Bx and AB on {x ∈ DB : Bx ∈ DA} by (AB)x = A(Bx).

Properties of ∗:
(0) (cA)∗ = cA∗ if c 6= 0
(1) (A∗ +B∗) ⊂ (A+B)∗ if A+B is densely defined
(2) (AB)∗ ⊃ B∗A∗ if AB is densely defined.
(3) A ⊂ B ⇒ B∗ ⊂ A∗

Exercise 4.3. Prove that (1) and (2) are equalities if A is bounded and everywhere
defined.

Definition 4.9. We write H ⊕H instead of H ×H. Define V : H ⊕H → H ⊕H
by V 〈x, y〉 = 〈y,−x〉. V is unitary.

Lemma 4.10. If T : H → H is linear and densely defined then GT∗ = (V GT )⊥.

Proof. (Tx, y) = (x, y∗) ⇔ (〈Tx,−x〉, 〈y, y∗〉) = 0 ⇔ (V 〈x, Tx〉, 〈y, y∗〉) = 0.
Therefore 〈y, y∗〉 ∈ GT∗ iff (V 〈x, Tx〉, 〈y, y∗〉) = 0 ∀x ∈ DT , i.e., iff 〈y, y∗〉 ⊥ V GT .

Corollary 4.11. T ∗ is always closed when T is densely defined.

Theorem 4.12. If T is densely defined in H and closed, then T ∗ is densely defined
and T ∗∗ = T .

Proof. Suppose DT∗ is not dense. Then ∃z 6= 0 3 z ⊥ DT∗ . So 〈0, z〉 ⊥
〈T ∗y,−y〉 ∀y ∈ DT∗ . I.e., 〈0, z〉 ⊥ V GT∗ = V (V GT )⊥. Therefore V 〈0, z〉 ⊥
(V GT )⊥ since V 2 = −I. Hence V 〈0, z〉 ∈ V GT since GT , and therefore V GT , is
closed. Consequently, 〈0, z〉 ∈ GT . I.e., z = T (0) - a contradiction. Therefore DT∗

is dense and so T ∗∗ exists. Now for any unitary V and any closed subspace M we
have V (M⊥) = (VM)⊥. Hence GT∗∗ = (V GT∗)⊥ = (V (V GT )⊥)⊥ = V 2GT = GT .
Therefore T ∗∗ = T .

Exercise 4.4. Prove that if T is densely defined in H then T ∗ is densely defined
in H iff T has a closed linear extension. Show that in this case T ∗∗ is the smallest
closed linear extension, i.e., it is contained in any other closed linear extension.
Moreover GT∗∗ = GT .

Definition 4.13. If T is a densely defined linear operator in H and if T has a
closed linear extension then the closure of T is the smallest closed linear extension.

In view of the preceding exercise, the closure of T , if it exists, is equal to T ∗∗ if
it exists — which it does if T ∗ is densely defined.

Definition 4.14. A core for a closed operator T is a subspace L ⊂ DT such that
T is the closure of the restriction of T to L, i.e., T = (T | L) closure.

Definition 4.15. Let A be densely defined in H A is symmetric if A ⊂ A∗. A is
self–adjoint if A = A∗.

Notes: 1) To say that A is symmetric simply means that (Ax, y) = (x,Ay)
∀x, y ∈ DA.

2) Since A∗ is always closed, a self–adjoint operator is always closed. A sym-
metric operator need not be closed. But since a symmetric operator always has
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a closed extension (namely A∗) it always has a closure. However, as we shall see
later, a closed symmetric operator need not be self–adjoint.

3) It tends to be easy to show that an operator is symmetric but hard to show
that it is self–adjoint (even if it is self–adjoint). The spectral theorem applies to
self–adjoint operators but not to symmetric operators in general. We build now
some machinery that is useful in proving self–adjointness.

Definition 4.16. Let Hn be a sequence of Hilbert spaces. Define H =
∑∞

n=1Hn

to be the set of all sequences (x1, x2, . . .) xj ∈ Hj 3
∑∞

j=1 ‖xj‖2 <∞. For x, y ∈ H
define (x, y) =

∑∞
j=1(xj , yj). The sum converges absolutely since∑
|(xj , yj)| ≤

∑
‖xj‖ ‖yj‖ ≤

∞∑
j=1

‖xj‖2 + ‖yj‖2

2
<∞.

Then H is a Hilbert space in this inner product. (Proof — straightforward
— completeness same as for `2.) H is called the (exterior) direct sum of the
Hn. Each Hn may be naturally identified with the subspace of H consisting of all
(0, 0, . . . , x, 0, . . .), x ∈ Hn, with x in the nth place.

If H is a given Hilbert space and {Hn} is a sequence of mutually orthogonal
subspaces such that the set of all

∑n
j=1 xj , xj ∈ Hj , are dense in H, then every x in

H can be uniquely written in the form
∑∞

j=1 xj , xj ∈ Hj , with ‖x‖2 =
∑
‖xj‖2, and

every such sum determines a vector in H (when
∑
‖xj‖2 < ∞). In this case H is

called the (interior) direct sum of the subspaces Hn and we write H =
∑∞

n=1⊕Hn.

Proposition 4.17. Let Hn be a sequence of Hilbert spaces. Let H =
∑∞

n=1Hn.
Let An : Hn → Hn be a bounded operator for each n. Define A : H → H by
A(x1, x2, . . .) = (A1x1, A2x2, . . .) with

DA = {x ∈ H :
∞∑

j=1

‖Ajxj‖2 <∞}.

Note that DA is a dense subspace of H because it contains all finitely non–zero
sequences. Define B(x1, x2, . . .) = (A∗1x1, A

∗
2x2, . . .) with

DB = {x ∈ H :
∞∑

j=1

‖A∗jxj‖2 <∞}.

Then A∗ = B. Moreover, the set of finitely nonzero sequences in H is a core for A
and A is closed.

Proof. Clearly A takes DA into H. If x ∈ DA and y ∈ DB then

(Ax, y) =
∞∑

j=1

(Ajxj , yj) =
∞∑

j=1

(xj , A
∗
jyj) = (x,By).

Hence the map x → (Ax, y) is continuous on DA and y ∈ DA∗ , and A∗y = By.
Thus A∗ ⊃ B. Conversely, suppose that z ∈ DA∗ . Then there exists z∗ ∈ H such
that (Ax, z) = (x, z∗), for all x ∈ DA. Then for all x ∈ Hn we have:

(x, (An)∗zn) = (Anx, zn) = (Ax, zn) = (Ax, z) = (x, z∗) = (x, (z∗)n).

Hence (An)∗zn = (z∗)n. Thus
∞∑

n=1

‖(An)∗zn‖2 =
∞∑

n=1

‖(z∗)n‖2 = ‖z∗‖2 <∞.
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This shows that z ∈ DB and z∗ = Bz. Hence A∗ ⊂ B. Thus A∗ = B. Finally, if
x ∈ DA, x = (x1, x2, . . .), then the element zj = (x1, . . . , xj , 0, 0, . . .) is a finitely
nonzero sequence and zj → x as j →∞, while Azj → Ax, in view of the definition
of DA. Hence the finitely nonzero sequences form a core for A. Since adjoints are
closed B is closed. A similar argument with An and A∗n interchanged shows that
B∗ = A. So A is closed.

Definition 4.18. The operator A in the proposition is called the direct sum of the
operators An. Notation: A =

∑∞
n=1⊕An

Corollary 4.19. If, in the preceding proposition, each An is Hermitian then A is
self–adjoint. Moreover it is the only self–adjoint operator whose domain contains
each Hn and agrees with An there.

Proof. B = A. Hence A∗ = A. If C is another self–adjoint operator with
DC ⊃ Hn ∀n and C = An on Hn, then C = A on the finitely nonzero sequences.
Since this set is a core for A, it follows that C ⊃ A. E.g., if x ∈ DA and zj is
as in the proof of the proposition, then Czj = Azj converges, as does zj . Hence,
since C is closed x ∈ DC and Cx = limCzj = limAzj = Ax. But a self–adjoint
operator can never have a proper self–adjoint extension. For C ⊃ A ⇒ C∗ ⊂ A∗,
i.e., C ⊂ A, therefore C = A.

Examples 4.20. Let (X,µ) be a measure space. Let f be a complex valued
measurable function on X. Let D = {g ∈ L2(µ) : fg ∈ L2(µ)}. Define Mfg = fg
for g ∈ D. Then Mf is densely defined. D is its “natural domain.” We shall always
understand the domain of a multiplication operator to be its natural domain. Of
course if f is bounded then its domain obviously is all of L2(µ).

Corollary 4.21. (Mf )∗ = Mf . If f is real then Mf is self–adjoint.

Proof. This is of interest primarily if f is unbounded because we have already
proved it if f is bounded. Let En = {x ∈ X : n− 1 ≤ |f(x)| < n} for n = 1, 2, . . ..
Let Hn be the set of functions in L2(µ) which are zero off En. Then clearly L2(µ) =∑∞

n=1⊕Hn. Moreover the restriction of Mf to Hn is bounded (with norm at most
n) and the domains of Mf and Mf are precisely those described in the proposition
for A and B. Hence M∗

f = Mf .

Exercise 4.5. In the notation of the proposition, prove that ‖A‖ = supn ‖An‖
if this is finite, and otherwise A is unbounded. That is, a direct sum of bounded
operators is bounded iff they are uniformly bounded.

Exercise 4.6. Let H be a Hilbert space and A a closed symmetric operator on H.
Suppose that there exists an increasing sequence of closed subspaces Kn of H, each
of which is contained in DA and is invariant under A, i.e., AKn ⊂ Kn. Suppose
moreover that

⋃∞
n=1Kn is a core for A. Prove that A is self–adjoint.



MATH 713 SPRING 2008 LECTURE NOTES ON FUNCTIONAL ANALYSIS 41

4.2. Differential operators. One of the most important applications of the spec-
tral theorem for self-adjoint operators is to the analysis of differential operators.
In this section we are going to study examples of symmetric differential operators,
some of which are actually self-adjoint and (for good reason) some are not. We
are going to focus on techniques that are used daily in the study of differential
operators.

Smoothing by convolution

Definition 4.22. For two real or complex valued measurable functions f and g on
Rd their convolution is defined by

(4.1) (f ∗ g)(x) =
∫

Rd

f(x− y)g(y)dy

when the integral exists.

In particular, if f ∈ L1(Rd) and g ∈ Lp(Rd) then the integral exists for almost
all x and

(4.2) ‖f ∗ g‖Lp(Rd) ≤ ‖f‖L1(Rd)‖g‖Lp(Rd), 1 ≤ p ≤ ∞.

[Ref. 611. E.g. Rudin #2 Ch. 8, Problem 4.]
But the convolution may also exist in other circumstances. We say that a func-

tion g is in Lp
loc(Rd) if

(4.3)
∫

K

|g(x)|pdx <∞ for every compact set K ⊂ Rd.

For example the function e|x|
2

is not in any Lp space but is in Lp
loc for all

p ∈ [1,∞]. Now suppose that f ∈ Cc(Rd) and g ∈ L1
loc(Rd). Then (f ∗ g)(x) exists

for every x ∈ Rd because the integral in (4.1) is really just an integral over the
compact set {y ∈ Rd : x − y ∈ supt f}. The integrand is a bounded function,
(y 7→ f(x− y)), times a function which is integrable over this set.

Exercise 4.7. Prove the following lemma.

Lemma 4.23. Suppose that f ∈ Cc(Rd) and g ∈ L1
loc(Rd). Then f ∗g is continuous

on Rd.

Hint: Choose a compact set K ⊂ Rd which contains all points within one inch
of supt f . Let x−K = {x− z : z ∈ K} (which equals {y : x− y ∈ K}). Then

(4.4) (f ∗ g)(x) =
∫

x0−K

f(x− y)g(y)dy

if |x− x0| ≤ 1.

Now that you’ve mastered this technique of proof, here is another lemma with
almost the same proof.

Lemma 4.24. Suppose that f ∈ C∞c (Rd) and g ∈ L1
loc(Rd). Then f ∗g ∈ C∞(Rd).

Proof. Write ∂j = ∂/∂xj and fj = ∂jf . To prove the lemma all we need to do
is to justify the identity

(4.5) ∂j(f ∗ g)(x) =
∫

Rd

(∂jf)(x− y)g(y)dy
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because ∂jf is again in C∞c . Choose K as in the previous hint and write the
difference quotient as

(f ∗ g)(x0 + hej)− (f ∗ g)(x0)
h

− (fj ∗ g)(x0)

=
∫

x0−K

{f(x0 + hej − y)− f(x0 − y)
h

− fj(x0 − y)
}
g(y)dy

which is valid if |h| < 1. The integrand clearly goes to zero pointwise as h → 0.
Thus to maintain a clear conscience you need only verify for yourself that the factor
in braces remains uniformly bounded as h goes to zero. You might try using the
fundamental theorem of calculus or (if f is real valued) the mean value theorem,
according to taste.

Lemma 4.25. Choose any function φ ∈ C∞c (Rd) such that
a. φ ≥ 0 on Rd.
b.

∫
Rd φ(x)dx = 1

c. φ(x) = 0 if |x| ≥ 1.
Let φk(x) = knφ(kx).
d. Then

∫
Rd φk(x)dx = 1 and φk(x) = 0 if |x| ≥ (1/k).

Let g ∈ Lp(Rd) for some p ∈ [1,∞). Then ‖φk ∗ g − g‖Lp(Rd) → 0 as k →∞.

Proof. Given g ∈ Lp(Rd) and ε > 0 there exists a function h ∈ Cc(Rd) such
that ‖g − h‖Lp(Rd) < ε. Then

‖φk ∗ g − g‖Lp ≤ ‖φk ∗ (g − h)‖Lp + ‖φk ∗ h− h‖Lp + ‖h− g‖Lp

≤ ε+ ‖φk ∗ h− h‖+ ε

But

|(φk ∗ h)(x)− h(x)| = |
∫

Rd

φk(x− y)(h(y)− h(x)dy|

≤ sup
{y:|x−y|≤(1/k)}

|h(y)− h(x)|

by d. Since h is continuous and has compact support the right side of the last line
goes to zero uniformly in x as k → ∞ and, for all k ≥ 1, is zero on the compact
set of points which are more than one inch from the support of h. Hence the right
side of the last inequality goes to zero in Lp.

The following corollary now follows from Lemmas 4.24 and 4.25.

Corollary 4.26. C∞ ∩ Lp(Rd) is dense in Lp(Rd) if 1 ≤ p <∞.

This corollary was based on the use of convolution. In the next theorem we will
go a step further. The proof will be based on using truncation in addition to this
corollary.

Theorem 4.27. C∞c is dense in Lp(Rd) for 1 ≤ p <∞.

Proof. Choose a function ψ ∈ C∞c (Rd) such that
e. ψ(x) = 1 for |x| ≤ 1.

Let ψk(x) = ψ(x/k). Then the functions ψk are uniformly bounded and ψk(x) → 1
for all x. Hence if f ∈ C∞ ∩Lp then ψkf is in C∞c (Rd) for all k and converges to f
in the Lp sense (by dominated convergence.) Thus C∞c (Rd) is dense in C∞∩Lp(Rd)
(in Lp norm) which, by Corollary 4.26, is dense in Lp.
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4.3. The Laplacian over Rd.

Definition 4.28. The Laplacian is the second order differential operator defined
by

(4.6) ∆f =
d∑

j=1

∂2f/∂x2
j for real or complex valued functions f on Rd

As to what sense of differentiability we need to impose on f we will leave up
in the air for the moment. But we will use the symbol ∆f only when f is twice
continuously differentiable. The issue for us will be how to extend or restrict the
domain of this operator so as to get a self-adjoint operator in L2(Rd).

The Laplace operator in its various manifestations is the most beau-
tiful and central object in all of mathematics. Probability theory,
mathematical physics, Fourier analysis, partial differential equa-
tions, the theory of Lie groups, and differential geometry all revolve
around this sun, and its light even penetrates such obscure regions
as number theory and algebraic geomery.

Edward Nelson, Tensor Analysis

Theorem 4.29. Define

(4.7) Tf = ∆f for f ∈ C∞c
Then

a. T is symmetric in L2(Rd) and
b. Its closure, T̄ , is self-adjoint.

Proof. Two integrations by parts shows that (Tf, g) = (f, Tg) for f and g in
C∞c (Rd). So T is symmetric. Its closure, T̄ , is therefore also symmetric. Since
(T̄ )∗ = T ∗ we need to show that T̄ = T ∗ in order to show that T̄ is self-adjoint.
Since T ⊂ T ∗ we already know that T̄ ⊂ T ∗. So we only need to show the reverse
containment. In words: we need to show that the closure of T is T ∗. More explicitly:
we need to show that for any function f ∈ D(T ∗) there is a sequence fn ∈ C∞c such
that fn converges to f in L2 norm while at the same time Tfn converges to T ∗f in
L2 norm. We are going to do this in two steps, analogous to the proof of Theorem
4.27.

Lemma 4.30. C∞(Rd) ∩ L2(Rd) is a core for T ∗.

Proof. Choose a sequence φk as in the proof of Lemma 4.25. If f ∈ D(T ∗)
and fk = φk ∗ f then we already know, by Lemma 4.25, that fk ∈ C∞ ∩ L2 and
converges to f in L2 norm. So we must show that fk ∈ D(T ∗) and T ∗fk converges
to T ∗f in L2 norm. Suppose that h ∈ C∞c (Rd). Then

(fk, Th) = (φk ∗ f, Th)
= (f, φk ∗ Th) by Fubini’s theorem

= (f, T (φk ∗ h)) by (4.5)

= (T ∗f, φk ∗ h) because φk ∗ f ∈ C∞c
= (φk ∗ (T ∗f), h)
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Since φl ∗ (T ∗f) ∈ L2 the right side, and therefore the left side, is a continuous
function of h in L2 norm. Hence fk ∈ D(T ∗) and moreover the identity shows that

(4.8) T ∗fk = φk ∗ (T ∗f)

In view of Lemma 4.25 we now see that T ∗fk converges to T ∗f in L2 norm.
Next, we are going to carry out the analog of the truncation step. But first we

will have to do a lot of work to justify a seemingly obvious integration by parts
when we are dealing with functions that don’t have compact support.

Lemma 4.31. Suppose that f ∈ C∞(Rd) ∩D(T ∗). Then

(4.9) (−∆f, f) =
d∑

j=1

∫
Rd

(∂jf)2dx

Proof. Of course the identity (4.9) would follow immediately from an integration
by parts if we could ignore the boundary terms. The fact that we will have to do
a lot of work to justify ignoring the boundary terms should be a lesson to you!

Choose ψ ∈ C∞c (Rd) as in the proof of Theorem 4.27, but this time we will need
to choose ψ a little more carefully. Choose it so that it is decreasing as one moves
radially outward from the origin. For example one could construct ψ in the form
ψ(x) = u(|x|) where u : [0,∞) → [0,∞) is ≥ 0 everywhere, has compact support
on [0,∞), is equal to one on [0, 1] and is decreasing thereafter. (Draw a picture of
u.) Let ψk(x) = ψ(x/k). Then 0 ≤ ψk ∈ C∞c (Rd) and ψk(x) increases to one for
all x as k → ∞. Integration by parts in the following identities is valid because
each integrand has compact support.

d∑
j=1

∫
Rd

ψk(x)((∂jf)(x))2dx = −
d∑

j=1

∫
Rd

{(∂jψk)∂jf + ψk(∂2
j f)}fdx

=
d∑

j=1

∫
Rd

(∂jψk)∂jf
2dx− (ψk∆f, f)

=
∫

Rd

(∆ψk)f2dx− (ψk∆f, f)

Now since 0 ≤ ψk(x) ↑ 1 we may apply the monotone convergence theorem to the
left side to find the limit

∫
Rd

∑
(∂jf(x)))2dx (which may be infinite as far as we

know right now.) Since (∆f)f ∈ L1(Rd) we may apply the dominated convergence
theorem to the last term on the right to find limk→∞(ψk∆f, f) = (∆f, f). Finally,
we may compute, by the chain rule, ∆ψk(x) = (1/k2)(∆ψ)(x/k), which goes to
zero uniformly in x as k → ∞. Hence

∫
Rd(∆ψk)f2dx → 0 by DCT again. This

proves (4.9) and in particular shows that the right side of (4.9) is finite after all.
Question Why did we need to choose ψ in this lemma so that ψk is increasing,

but not in the proof of Theorem 4.27?
Proof of Theorem 4.29. In view of Lemma 4.31 it suffices to show that

if f ∈ C∞(Rd) ∩ D(T ∗) then there exists a sequence fn ∈ C∞c (Rd) such that fn

converges to f in T ∗ graph norm. To this end define ψn as in the proof ofTheorem
4.27 and define fn(x) = ψn(x)f(x). Clearly fn ∈ C∞c and fn converges to f in
L2 norm. So it remains only to prove that ∆fn converges to ∆f in L2 norm also.
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[Must point out somewhere that T ∗f = ∆f when f ∈ C∞ ∩D(T ∗).] But

∆fn = (∆ψn)f + ψn∆f + 2
d∑

j=1

(∂jψn)(∂jf)

Since ∆ψn → 0 uniformly and f ∈ L2 the first term goes to zero in L2 norm by
DCT. Since ψn → 1 boundedly the second term converges to ∆f in L2 norm by
DCT also. Finally, since ∂jψn(x) = (1/n)(∂jψ)(x/n), which goes to zero uniformly
on Rd, while each term ∂jf ∈ L2(Rd) by Lemma 4.31, the last term goes to zero in
L2 norm.

Remark 4.32. There is an important alternative way to prove Theorem 4.29, using
the Fourier transform. We will sketch this later in ....

4.4. The Laplacian in one dimension. In one dimension the Laplacian of a
function f is just f ′′, if you pay attention to Definition 4.28. But we are now
dealing with the Laplacian as a closed operator in a Hilbert space and the domain
is not entirely up to us to choose, if we wish the operator to be closed, not to mention
self-adjoint. If f is a function in D(T ∗) then f doesn’t change as an element of
L2(R) if we change it on a set of measure zero. And yet such a change can make a
smooth function into a nowhere differentiable function. We are going to show that
by changing f on a set of measure zero (if necessary) we can make any element f
in D(T ∗) into a C1 function such that f ′ is absolutely continuous on R while f ′′,
which exists a.e., is in L2(R). This gives an explicit characterization of the domain
of d2/dx2 as a self-adjoint operator in L2(R).

Theorem 4.33. Suppose that d = 1 and h ∈ D(T ∗). Then there exists a unique
continuous function u such that

a. u = h a.e.
Moreover

b. u ∈ C1(R),
c. u′ is absolutely continuous,
d. u′′ ∈ L2(R) and T ∗h = u′′.

Proof. Choose φ ∈ C∞c (R) such that
∫

R φ(x)dx = 1. For any function f ∈
C∞(R) observe the identity

(4.10) f ′(x) = f ′(t) +
∫ x

t

f ′′(s)ds.

Multiply this identity by φ(t) and integrate w.r.t. t. Do an integration by parts on
the first term to find

(4.11) f ′(x) = −
∫

R
φ′(t)f(t)dt+

∫
R
φ(t)

∫ x

t

f ′′(s)dsdt.

Let wx(s) =
∫

R φ(t)χ[t,x](s)dt where χ[t,x] means −χ[x,t] if t > x. For fixed x, wx(s)
is a bounded function of s with compact support. As a function of x the map
x 7→ wx is a continuous function into L2(R). (Check these statements now!) Then
(4.11) may be written

(4.12) f ′(x) = −(φ′, f) + (wx, f
′′).

This equation expresses information about f ′ at a point in terms of inner products.
Suppose now that h ∈ D(T ∗). By Lemma 4.30 there exists a sequence fn ∈ C∞∩L2
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such that fn converges to h in L2 norm while f ′′n converges to g ≡ T ∗h in L2 norm.
Replace f by fn in (4.12) and let n→∞ to find

(4.13) lim
n→∞

f ′n(x) = −(φ′, h) + (wx, g).

Denote by v(x) the function on the right. Then v is continuous and locally bounded.
Now repeat this argument starting with the identity

(4.14) fn(x) = fn(t) +
∫ x

t

f ′n(s)ds

instead of (4.10). We find

(4.15) fn(x) =
∫

R
φ(t)fn(t)dt+ (wx, f

′
n).

Thus

(4.16) lim fn(x) = (φ, h) + (wx, v)

for each x. But some subsequence fnk
converges a.e. to h. Hence the continuous

function
u(x) ≡ (φ, h) + (wx, v)

is equal to h(x) a.e. We have now shown that fn(x) converges to u(x) while f ′n
converges to v boundedly on every finite interval. Taking the limit now in (4.14)
we deduce that

(4.17) u(x) = u(t) +
∫ x

t

v(s)ds

for all x and t. Since v is continuous the fundamental theorem of calculus now
shows that u′ = v and therefore u ∈ C1(R). Going back a step further, to (4.10),
with f replaced by fn we find, upon letting n→∞

(4.18) v(x) = v(t) +
∫ x

t

g(s)ds

Since L2
loc ⊂ L1

loc we see that v is absolutely continuous and v′(x) = g(x) a.e. This
completes the proof of the theorem.

4.5. A non-self-adjoint version of the Laplacian. So far we have been proving
only self-adjointness of the Laplacian on the entire real line. But when a boundary
is present anything can happen. Here is an example of the Laplacian on a half line
wherein self-adjointness fails.

Example 4.34. A closed symmetric operator which is not self–adjoint. Let H =
L2(0,∞), D = C∞c ((0,∞)). Define Tf = f ′′ for f in D. Then T is densely defined.
If f, g ∈ D, then

(Tf, g) =
∫ ∞

0

f ′′gdx = −
∫ ∞

0

f ′g′dx =
∫ ∞

0

fg′′dx = (f, Tg).

Therefore T ⊂ T ∗. Hence T ∗ is densely defined and T closure exists. Let T̄ be
the closure of T . Then T̄ ∗ = (T ∗∗)∗ = T ∗. But T ∗ ⊃ T . Thus T̄ ∗ ⊃ T̄ , i.e., T̄ is
symmetric.
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Claim: T̄ is not self–adjoint.
Proof. Let f ∈ D(T̄ ) and let g = T̄ f . Then there exists fn ∈ D(T ) 3 fn → f

in L2 and Tfn → g. Now,

fn(x) =
∫ x

0

f ′n(t)dt =
∫ x

0

( ∫ t

0

f ′′n (s)ds
)
dt =

∫ x

0

∫ x

0

χ[0,t](s)f ′′n (s)dsdt

=
∫ x

0

( ∫ x

0

χ[0,t](s)f ′′n (s)dt
)
ds =

∫ x

0

(x− s)f ′′n (s)ds→
∫ x

0

(x− s)g(s)ds.

Therefore

(4.19) f(x) =
∫ x

0

(x− s)g(s)ds a.e.

Since f is determined only up to a set of measure zero, we may assume (4.19) holds
for all x by modifying f on a set of measure zero. Thus f is absolutely continuous on
[0,∞) since the integrand in(4.19) is in L1 locally. Clearly f(0) = limx→0 f(x) = 0.
Moreover

f(x+ h)− f(x)
h

=
1
h

( ∫ x+h

0

(x+ h− s)g(s)ds−
∫ x

0

(x− s)g(s)ds
)

=
1
h

( ∫ x+h

x

(x+ h− s)g(s)ds+ h

∫ x

0

g(s)ds
)

but ∣∣∣ 1
h

∫ x+h

x

(x+ h− s)g(s)ds
∣∣∣ ≤ ∫ x+h

x

|g(s)|ds→ 0 as h→ 0.

Therefore f ′(x) =
∫ x

0
g(s)ds everywhere. Thus f ′ is absolutely continuous on [0,∞)

and f ′(0) = 0. Hence if f ∈ D(T̄ ) then f and f ′ are absolutely continuous,
f ′′ = g ∈ L2, and Tf = f ′′. (This is a slightly different derivation of these
statements from the full line case.) But also f(0) = f ′(0) = 0. So suppose ϕ is an
arbitrary function in C2([0,∞)) with compact support in [0,∞). Then ∀f ∈ D(T̄ );
(T̄ f, ϕ) = (f, ϕ′′), by two integrtions by parts, using f(0) = f ′(0) = 0. Therefore
ϕ ∈ D(T̄ ∗). But we may take ϕ(0) 6= 0. Then ϕ /∈ D(T̄ ). Hence T̄ $ T̄ ∗. That is,
T̄ is not self-adjoint.

Moral. In this example the domain of T and hence of T̄ was too small, giving us
a symmetric but not self-adjoint version of d2/dx2. Why is there such a difference
between this half-line case and the full-line case? Answer: The domain of T̄ is
so small because the two conditions f(0) = 0 and f ′(0) = 0 were forced by our
choice of domain of T , namely, C∞c ((0,∞)). These functions are zero in an entire
neighborhood of zero. And when we take the closure of the operator there is still
a remnant of this character in the form f(0) = f ′(0) = 0, as we saw. But if we
enlarge the domain of T by dropping one of these two conditions will its closure
be self-adjoint? Answer: Yes. The next theorem contains a precise statement. It
will be important to understand that “too small” refers to too many boundary
conditions rather than too much regularity. To this end we will assume the validity
of the following exercise.

Exercise 4.8. Define Tf = f ′′ with domainD(T ) = C∞c ((0,∞)), as in the previous
example. So T is the “minimal” operator. Prove that g ∈ D(T ∗) if and only if

a. g ∈ L2((0,∞)),
b. g ∈ C1([0,∞)) after modification on a set of measure zero, and
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c. g′ is absolutely continuous and g′′ ∈ L2((0,∞)).
Hint: Most of the proof will be the same as the proof of Theorem 4.33. However

when convoluting near the left endpoint it would be wise to use a function φ(x)
which is supported in (−∞, 0].

Theorem 4.35. Define Sf = f ′′ with D(S) = {f ∈ C∞([0,∞) : f(0) = 0}. Then
S is symmetric and S̄ is self-adjoint.

Proof. Suppose that f ∈ C∞c ([0,∞)) and that g and g′′ are in L2([0,∞)). The
second condition should be interpreted, as usual, to mean that g ∈ C1([0,∞)) while
g′ is absolutely continuous and g′′ ∈ L2. We need the following integration by parts
identity, which is so important that I’m going to derive it for you.

(4.20) (f ′′, g) = (f, g′′) + f(0)g′(0)− f ′(0)g(0)

Proof of (4.20):∫ ∞

0

f ′′(x)g(x)dx = −
∫ ∞

0

f ′(x)g′(x)dx− f ′(0)g(0)

=
∫ ∞

0

f(x)g′′(x)dx+ f(0)g′(0)− f ′(0)g(0)

We have made no assumption so far about f or g at x = 0. Now let us assume that
f(0) = 0. This puts f into D(S) and we may then rewrite (4.20) as

(4.21) (Sf, g) = (f, g′′)− f ′(0)g(0)

If g were in D(S) then we would have g(0) = 0 and this identity therefore shows
that S is symmetric, as claimed. Returning to the supposition at the beginning
of this proof observe that according to the definition 4.6 the function g will be
in D(S∗) only if (Sf, g) is a continuous function of f in the L2 norm. But the
first term on the right of (4.21) is a continuous linear functional of f in L2 norm
because g′′ ∈ L2([0,∞)). Therefore g will be in the domain of S∗ only if the
map f 7→ f ′(0)g(0) is continuous in L2 norm. But this is impossible unless the
coefficient g(0) is zero. (See exercise below.) Hence, in order for g to be in D(S∗) it
is necessary that g(0) = 0. That is, if g ∈ D(S∗) then g ∈ D(S̄). Since we already
know that S̄ ⊂ S∗ we have now shown that S̄ = S∗.

Exercise 4.9. Show that the linear maps C∞c ([0,∞)) 3 f 7→ f(0) and
C∞c ([0,∞)) 3 f 7→ f ′(0) are both discontinuous when the L2 norm is used on
the domain and therefore have no continuous extensions to L2.

4.6. von Neumann’s criteria for self-adjointness. As in the case of bounded
Hermitian operators we shall prove two forms of the spectral theorem for self–
adjoint operators. Our proof depends on the following basic criterion for self–
adjointness. (The organization of the next theorem and its corollary is taken from
Reed and Simon, vol. 1.)

Theorem 4.36. Let T be a symmetric operator on a Hilbert space H. Then the
following three statements are equivalent:

(a) T is self–adjoint
(b) T is closed and ker(T ∗ + i) = ker(T ∗ − i) = {0}.
(c) Range(T + i) = Range(T − i) = H.
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Proof. We prove (a) ⇒ (b) ⇒ (c) ⇒ (a).

Assume (a). Since T = T ∗, T is closed. If ϕ ∈ ker(T ∗ − i) then i(ϕ,ϕ) =
(iϕ, ϕ) = (T ∗ϕ,ϕ) = (Tϕ, ϕ) = (ϕ, T ∗ϕ) = (ϕ, iϕ) = −i(ϕ,ϕ). Therefore ‖ϕ‖2 = 0
and ϕ = 0. A similar proof shows that ker(T ∗ + i) = {0}.

Assume (b). If ψ were orthogonal to Range(T + i) then ((T + i)ϕ,ψ) = 0,
∀ϕ ∈ DT . Hence ψ ∈ DT∗ and (ϕ, (T ∗ − i)ψ) = 0 ∀ϕ ∈ DT . Since DT is dense
(T ∗ − i)ψ = 0. But by (b) ψ = 0. Hence Range(T + i) is dense in H. But for any
ϕ ∈ DT ,

(4.22) ‖(T + i)ϕ‖2 = ((T + i)ϕ, (T + i)ϕ) = ‖Tϕ‖2 + ‖ϕ‖2 ≥ ‖ϕ‖2.
Hence if ψ ∈ H is arbitrary ∃ ϕn ∈ DT 3 (T + i)ϕn → ψ and the last inequality
shows that then ϕn is Cauchy. Hence ∃ϕ ∈ H such that ϕn → ϕ. But T + i is
closed. Hence ϕ ∈ DT and (T + i)ϕ = ψ. Therefore Range(T + i) = H. The proof
that Range(T − i) = H is similar.

Assume (c). To show T ∗ = T it suffices to show DT∗ ⊂ DT since T is symmetric.
Let ϕ ∈ DT∗ . Since Range(T − i) = H, ∃ y ∈ DT such that (T − i)y = (T ∗ − i)ϕ.

Since DT ⊂ DT∗ , ϕ− y ∈ DT∗ and (T ∗ − i)(ϕ− y) = 0. But Range(T + i) = H
implies ker(T ∗ − i) = {0}. Hence ϕ− y = 0. That is, ϕ ∈ DT .

Definition 4.37. An operator T is called essentially self–adjoint if its closure, T ,
exists and is self–adjoint.

Corollary 4.38. Let T be a symmetric operator on a Hilbert space. The following
are equivalent:

(a) T is essentially self–adjoint.
(b) ker(T ∗ + i) = ker(T ∗ − i) = {0}.
(c) Range(T + i) and Range(T − i) are dense in H.

Proof. Since T ∗ = T
∗

(a) and (b) are equivalent by the theorem. For any
symmetric operator T , the inequality (4.22) in the proof of the theorem, together
with the definition of closure of an operator, imply that Range(T + i) = Range(T +
i). Similarly Range(T − i) = Range(T − i). Hence condition (c) of the corollary is
equivalent to condition (c) of the theorem for T .

Remark 4.39. If T is a closed symmetric operator then the inequality (4.22) in the
proof of the theorem holds and the argument following it shows that the subspaces
K± = Range(T ± i) are closed. Of course T is self–adjoint if and only if K+ =
K− = H. But if this fails then the numbers m± = dimK⊥

± are measures of the
deviation of T from self–adjointness. The cardinal numbers m± are called the
deficiency indices of T . It is a theorem that if m+ 6= m− then T has no self–adjoint
extensions. If m+ = m− 6= 0 then T has many self–adjoint extensions. Reference:
Riesz and Nagy “Functional Analysis,” Section 123.

Exercise 4.10. Let S = S(R) as in (1) of Example 1.7. Define L : S → S by

Lf = −d
2f

dx2
.

S is dense in L2(R). Regard L as a densely defined linear transformation in L2(R).
a) Show that L has a closed linear extension.
b) Show that the closure T of L is self–adjoint.
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Definition 4.40. For any (possibly unbounded) linear operator T : H → H, a
complex number λ is said to be in the resolvent set of T if T −λI is one to one and
onto and (T − λI)−1 is bounded. Otherwise λ is said to be in the spectrum of T .

Exercise 4.11. a) Restrict the operator L of the previous problem to the set D
consisting of those f which vanish in a neighborhood of 0. (The neighborhood de-
pends on f .) Call the restriction A. Prove that A is densely defined and symmetric
but is not essentially self–adjoint. Hint: Let ϕ = Fourier transform of 1

t2−i and
show that A∗ϕ = iϕ. b) Find the spectrum of A∗.

Exercise 4.12. Suppose that A is a linear transformation in H and that A is
densely defined, closed, one to one, and has dense range. Then clearly A−1 exists
and is densely defined, and A∗ and (A−1)∗ both exist. Prove

i) ker(A∗) = 0
ii) Range A∗ is dense in H
iii) (A−1)∗ = (A∗)−1 (which exists by i) and ii))
iv) A−1 is closed.



MATH 713 SPRING 2008 LECTURE NOTES ON FUNCTIONAL ANALYSIS 51

4.7. The spectral theorem for unbounded self-adjoint operators. Let E(·)
be a projection valued measure on a Hilbert space H over a σ–field S of subsets of
a set X. (cf. Definition n 3.27) For any vector u in H, the measure

B → mu(B) ≡ (E(B)u, u)

is a positive finite measure. If f is a bounded measurable function on X, then∥∥∥( ∫
fdE

)
u
∥∥∥2

=
( ∫

fdEu,

∫
fdEu

)
=

(( ∫
fdE

)∗( ∫
fdE

)
u, u

)
=

(( ∫
|f |2dE

)
u, u

)
=

∫
|f |2d(E(·)u, u).(4.23)

thus

(4.24)
∥∥∥( ∫

fdE
)
u
∥∥∥2

=
∫
|f |2dmu.

Hence the map f → (
∫
fdE)u defined for bounded measurable f on X extends

uniquely to an isometry from L2(x,mu) into H. We denote by
∫
fdEu the value

of this isometry for each f in L2(x,mu).
Now let g be a fixed complex valued measurable function on X. We define an

operator A on H as follows: DA = {u ∈ H : g ∈ L2(X,mu)} and on this domain,
define Au =

∫
gdEu and write A =

∫
gdE.

Proposition 4.41. A is a closed operator and A∗ =
∫
gdE. If g is real, then A is

self–adjoint.

Proof. Let Bn = {x ∈ X : n− 1 ≤ |g(x)| < n} for n = 1, 2, . . .. Let Hn = range
E(Bn). Since the Bn are disjoint and

⋃∞
1 Bn = X, we have H =

∑∞
n=1⊕Hn. Let

An =
∫
gχBndE. Since gχBn is a bounded function, An is a bounded operator

and E(Bn)An = AnE(Bn) =
∫
gχBnχBndE =

∫
gχBndE = An. Thus An leaves

Hn invariant and is zero on the orthogonal complement of Hn. Moreover, A∗n =∫
gχBn

dE also leaves Hn invariant and annihilates H⊥
n . We may regard An as an

operator defined in Hn and we consider the direct sum operator
∑∞

n=1⊕An defined
in Proposition 4.17. If u is in H, then

∞∑
n=1

‖Anu‖2 =
∞∑

n=1

∫
|gχn|2d(E(·)u, u) =

∞∑
n=1

∫
|g|2χndmu =

∫
|g|2dmu.

Hence u is in the domain of
∑∞

n=1⊕An if and only if u ∈ DA. Moreover if u is in
DA, then

Au =
∫
gdEu = lim

n→∞

∫
gχ∪n

k=1Bk
dEu

by the definition of A since
gχ∪n

k=1Bn → g

in L2(mu). Hence

Au = lim
n→∞

n∑
k=1

∫
gχBk

dEu = lim
n→∞

n∑
k=1

AkE(Bk)u =
( ∞∑

k=1

⊕Ak

)
u.
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Thus A is a direct sum of bounded operators and is therefore closed by Proposition
4.17. Moreover A∗ =

∑∞
k=1⊕A∗k which, by what we have just shown, is equal to∫

gdE. Finally if g is real, then A∗ =
∫
gdE =

∫
gdE = A, so A is self–adjoint.

Theorem 4.42 (Spectral Theorem: multiplication operator form). Let T be a self–
adjoint operator on a separable Hilbert space H. Then there exists a finite measure
space (X,µ), a unitary operator U : H → L2(X,µ) and a real valued measurable
function f on X such that

(4.25) UTU−1 = Mf .

Proof. By Theorem 4.36, T + i is one to one and onto from DT to H. Hence
its inverse (T + i)−1 exists. Moreover by (4.22) (page 41) (T + i)−1 is bounded.
Similarly (T − i)−1 is also a bounded, everywhere defined operator. Moreover, by
the preceding exercise ((T + i)−1)∗ = (T − i)−1. Since (T + i) commutes with
T − i (be careful with domains when verifying this) their inverses also commute.
It follows that (T + i)−1 is a normal (bounded) operator. Hence, by the spectral
Theorem 3.21 there exists a finite measure space (X,µ) and a bounded measurable
function g on X and a unitary operator U : H → L2(X) such that

U(T + i)−1U−1 = Mg.

Now (T + i)−1 is one to one. Hence, so is Mg. Therefore g can be zero only on
a set of measure zero. Thus the function f(x) = 1/g(x)− i is well defined a.e. [µ]
and we may define it to be zero where g = 0. Thus g(x) = (f(x) + i)−1 a.e. If h is
in L2(µ) then each of the following assertions is clearly equivalent to the next:

1) h ∈ DMf

2) h ∈ DMf+i

3) h ∈ Range M(f+i)−1 = Range Mg

4) U−1h ∈ Range (T + i)−1 = Domain (T + i) = DT .
Thus UDT = DMf

. Moreover if h ∈ DMf
and ϕ = (f + i)h then h = gϕ so

that U−1h = U−1MgUU−1ϕ = (T + i)−1U−1ϕ. Thus (T + i)U−1h = U−1ϕ or
U(T + i)U−1h = Mf+ih = Mfh+ ih, so UTU−1h = Mfh and (4.25) holds. But for
any unitary operator U and closed operator A, (UAU−1)∗ = UA∗U−1 (exercise).
Hence (4.25) shows that Mf is self–adjoint. Thus by Corollary 4.21 f is real almost
everywhere.

Theorem 4.43 (Spectral theorem: projection valued measure form). Let T be a
self–adjoint operator on a separable complex Hilbert space H. Then there exists a
projection valued measure E(·) on the Borel sets of the line such that

(4.26) T =
∫ ∞

−∞
λdE(λ).

Proof. Just as in the existence proof of the spectral Theorem 3.36 for bounded
normal operators, it suffices, in view of the preceding theorem, to prove the theorem
in case T is a multiplication operator. Thus if T = Mf where f is a real–valued
measurable function on (X,µ), we define E(B) = Mχf−1(B)

for any Borel set B ⊂ R.
Then if g(λ) =

∑n
j=1 ajχBj

(λ) is a simple function on the line with {Bj} disjoint
we have ∫

g(λ)dE(λ) =
∑

ajE(Bj) =
∑

ajMχf−1(Bj)
= Mg◦f .
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Thus

(4.27)
∫ ∞

−∞
g(λ)dE(λ) = Mg◦f

when g is a simple function. By taking uniform limits of a sequence of simple
functions we see that this continues to hold for any bounded measurable function
g on R. Thus, from (4.27) and the equations (4.23) and (4.24) we have∫

X

|(g ◦ f)(x)u(x)|2dµ(x) =
∥∥∥( ∫

gdE
)
u
∥∥∥2

=
∫ ∞

−∞
|g(λ)|2dmµ(λ).

Now, if g is an arbitrary measurable function on R, we put gn(λ) = g(λ) if |g(λ)| ≤ n
and 0 otherwise. Then by monotone convergence we get

(4.28)
∫

X

|(g ◦ f)(x)u(x)|2dµ(x) =
∫ ∞

−∞
|g(λ)|2dmµ(λ)

for all g. In particular, putting g(λ) = λ we see that∫
X

|f(x)u(x)|2dµ(x) =
∫ ∞

−∞
λ2dmu(λ).

Hence u ∈ DMf
iff u ∈ DS where S =

∫∞
−∞ λdE(λ). Thus if u ∈ DMf

, then

Su = lim
m→∞

∫ m

−m

λdE(λ)u = lim
m→∞

∫ ∞

−∞
gm(λ)dE(λ)u

= lim
m→∞

Mgm◦fu = Mfu

as one sees easily using the dominated convergence theorem twice. Thus∫ ∞

−∞
λdE(λ) = Mf

which proves the theorem.

Remark 4.44. The uniqueness portion of the spectral theorem as in the proof of
Theorem 3.36 holds in the unbounded case also. But we omit the proof.

Remark 4.45. Questions of commutativity for unbounded operators are delicate and
dangerous. If T is unbounded and D is a bounded operator the useful definition is
as follows: T commutes with D if

DT ⊂ TD.

Note that with this definition 0 commutes with all unbounded operators (but
would not if we insisted on DT = TD). With this definition it is true that if
T =

∫
λdE(λ) is self–adjoint, then a bounded operator D commutes with T iff it

commutes with all E(B) (B = Borel set).

Remark 4.46. (Functional Calculus.) Just as for bounded operators, there is a func-
tional calculus for unbounded self-adjoint operators also. For any Borel measurable
function f on R and self-adjoint operator T define

(4.29) f(T ) =
∫ ∞

−∞
f(λ)dE(λ)

where E(·) is the spectral resolution of T . We will omit here further discussion of
the consistency of this definition for unbounded functions. For bounded functions
some of the discussion in Subsection 3.3 applies.
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Exercise 4.13. Let A be a self–adjoint operator on a complex separable Hilbert
space H and define eitA by using f(λ) = eitλ. The usual power series for the unitary
operator eitA cannot, of course, converge in norm if A is unbounded because each
term of the series is an unbounded operator. But it could happen that for some
vectors x the series

(4.30)
∞∑

n=0

(n!)−1(itA)nx

converges and actually equals eitAx. A vector x is called an analytic vector for A if
a) x ∈ D(An) for n = 1, 2, . . . and
b) the series (4.30) converges absolutely for all t in some interval (−ε, ε) de-

pending on x.
Prove that any self–adjoint operator A has a dense set of analytic vectors. [One

says
∑∞

n=0 yn converges absolutely if
∑∞

n=0 ‖yn‖ <∞.]
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5. Compact Operators

Definition 5.1. A linear map A : HBan → KBan is compact if the image of every
bounded set has compact closure.

Remarks 5.2. Let A : HBan → KBan be a linear map. Then
(1) If A is compact then A is bounded.
(2) Let A be compact and define Sn = {x : ‖x‖ ≤ n}. Then ASn is compact

and therefore separable. Since ran(A) =
⋃∞

n=1ASn, the range of A is
separable.

(3) Let {An} be a sequence of compact operators such that ‖An − A‖ → 0.
Then A is compact.2

Proof. Given {xn} with ‖xn‖ ≤ 1 there is a subsequence nj,1 such that A1xnj,1

converges as j → ∞. This subsequence has in turn a subsequence nj,2 such that
A2xnj,2 converges, etc. Let yk = xnk,k

. Then {yk} is a subsequence of {xn}.
Moreover Anyk converges in k for each n.

‖Ayk −Ay`‖ ≤ ‖Ayk −Aiyk‖+ ‖Aiyk −Aiy`‖+ ‖Aiy` −Ay`‖
≤ 2‖A−Ai‖+ ‖Aiyk −Aiy`‖.

Hence limk,`→∞‖Ayk −Ay`‖ ≤ 2‖A−Ai‖ which can be made arbitrarily small.

Definition 5.3. A has finite rank if R(A) is finite dimensional, where R(A) =
range A.

Example 5.4. Let ξj be in H∗ and yj be in K for j = 1, . . . , n. Let Ax =∑n
j=1 ξj(x)yj . Then A is bounded and of finite rank.

Remarks 5.5. A bounded and finite rank ⇒ A is compact. Every norm limit of
bounded finite rank operators is compact.

Partial converse: If A : HBan → KBan is compact and has closed range then A
is of finite rank.

Proof. By the open mapping theorem A : H → R(A) is open. Therefore R(A)
is locally compact and hence finite dimensional.

Corollary 5.6. If A : HBan → HBan is compact and H is infinite dimensional
then 0 ∈ σ(A).

Proof. If 0 is not in σ(A) then R(A) = H, which is closed but not finite
dimensional.

Example 5.7. Let K(s, t) be continuous on [0, 1] × [0, 1]. Define an operator
A : L1(0, 1) → C([0, 1]) by

(Af)(s) =
∫ 1

0

K(s, t)f(t)dt for all f ∈ L1(0, 1).

Af is continuous by the dominated convergence theorem. We will show that A is
a compact operator.

2One can prove this by showing that AS1 is totally bounded. Indeed if ε > 0 is given and
‖A−Am‖ < ε, since AmS1 is totally bounded, there exists a finte set Λ ⊂ K such that AmS1 ⊂
∪y∈ΛB(y, ε). It is now easily seen that AS1 ⊂ ∪y∈ΛB(y, 2ε).
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Let M = sup{|K(s, t)| : 0 ≤ s, t ≤ 1}. Then |(Af)(s)| ≤ M for all s in [0, 1] if
‖f‖1 ≤ 1. Since K is uniformly continuous there is, for given ε > 0 a δ > 0 such
that |K(s, t)−K(s0, t)| ≤ ε whenever |s− s0| < δ. Hence if ‖f‖1 ≤ 1 then

|(Af)(s)− (Af)(s0)| ≤
∫
|K(s, t)−K(s0, t)| |f(t)|dt ≤ ε

whenever |s − s0| < δ. Thus A (unit ball of L1) is a pointwise bounded equicon-
tinuous family of functions on [0, 1] and therefore has compact closure by Ascoli’s
theorem. So A is a compact operator.

Further examples can be obtained from the preceding example by changing the
domain and/or range. Thus, since ‖f‖p ≥ ‖f‖1 for 1 ≤ p ≤ ∞, the restriction of A
to Lp or L∞ or C([0, 1]) defines a compact operator into C([0, 1]). Moreover, since
a totally bounded subset of C([0, 1]) is also totally bounded in Lp, for 1 ≤ p ≤ ∞,
one can simultaneously change the range also to any one of these spaces.

Theorem 5.8 (Schauder). An operator in B(X,Y ) is compact iff its adjoint is
compact.

Proof. Let S, S∗ be the closed unit balls in X, Y ∗ respectively.
Let T : X → Y be compact and let {y∗n} be an arbitrary sequence in S∗. Let

B = {y ∈ Y : ‖y‖ ≤ ‖T‖}. The restriction of y∗n to B gives a sequence of uniformly
bounded functions on B which are equicontinuous since |y∗n(y)− y∗n(z)| ≤ ‖y − z‖,
n = 1, 2, . . .. Since TS is a compact subset of B Ascoli’s theorem shows that there is
a subsequence y∗nj

which is Cauchy in sup norm on TS. Thus (T ∗y∗nj
)(x) = y∗nj

(Tx)
is Cauchy in sup norm on S. Thus T ∗y∗nj

converges in norm to some continuous
linear functional on X and so T ∗ is compact. Conversely, let T ∗ be compact. Then,
by the point just proved, T ∗∗ is compact, hence if S∗∗ is the closed unit ball in X∗∗,
T ∗∗S∗∗ is totally bounded. Thus if χ : Y → Y ∗∗, is the natural imbedding, we have
χTS ⊆ T ∗∗S∗∗, χTS is totally bounded hence TS is totally bounded. Therefore
TS is compact and T is compact.

Exercise 5.1. Let H be a separable complex Hilbert space. A bounded operator
A is said to be of Hilbert–Schmidt type (or simply a Hilbert–Schmidt operator) if

(5.1)
∞∑

n=1

‖Aen‖2 <∞

for some Orthonormal ˙ basis {e1, e2, . . .} of H.

a) Prove that if A is of H.S˙ type then the sum in (5.1) is independent of the
choice of Orthonormal ˙ basis.

Denote the sum in (5.1) by ‖A‖22.
b) Prove that

(5.2) ‖A‖ ≤ ‖A‖2.

c) Prove that the set of H.S˙ operators on H is itself a Hilbert space in the usual
operations of addition and scalar multiplication if one defines

(5.3) (A,B) =
∞∑

n=1

(Aen, Ben).

d) Prove that a Hilbert–Schmidt operator is compact.
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e) Show that the set of Hilbert–Schmidt operators is a two sided ideal in B(H).

5.1. Riesz Theory of Compact Operators. Let H be a Banach space. Let
C : H → H be compact. Let B = I − C then B∗ = I − C∗.

Lemma 5.9. If {yn} is a bounded sequence and Byn converges then {yn} has a
convergent subsequence.

Proof. Since C is compact there is a subsequence ynj
such that Cynj

converges,
to z say. Since ynj − Cynj converges, to w say, it follows that ynj converges to
w + z.

Definition 5.10. An operator B : Xnormed → Y normed is said to be bounded below
if there is a constant m > 0 such that ‖Bx‖ ≥ m‖x‖ for all x ∈ X.

Lemma 5.11. If B = I − C is one to one then B is bounded below.

Proof. Suppose that B is not bounded from below. Then there exists a se-
quence yn such that ‖yn‖ = 1 while Byn → 0. By Lemma 1 there is a convergent
subsequence ynj

. But if x = lim ynj
then ‖x‖ = 1 and Bx = 0, so B is not one to

one.

Proposition 5.12. ker(B) is finite dimensional.

Proof. Let H0 = ker(B). x is in H0 if and only if Cx = x. But C sends the
unit ball of H0 into a totally bounded set. Therefore H0 is finite dimensional by
Proposition 1.32.

Lemma 5.13. Let F be a finite dimensional subspace of a Banach space H. Then
there is a closed subspace M ⊂ H such that

H = F ⊕M

in the sense that every vector z, in H is uniquely of the form z = x + y with x in
F and y in M .

Proof. Let x1, . . . , xn be a basis of F . For each j the linear functional ξj : F →
scalars, defined by ξj(

∑n
k=1 akxk) = aj , is a well defined linear functional on the

finite dimensional space F , hence is continuous. It therefore has a continuous linear
extension to all of H by the Hahn–Banach theorem. Denote the extension by ξj
also. Define an operator P : H → H by

Px =
n∑

j=1

ξj(x)xj .

If x =
∑n

k=1 akxk then clearly Px = x. Therefore, since range P ⊂ F we have P 2 =
P . P is a finite sum of continuous operators, hence is continuous. Let M = kerP .
Then M is closed and M ∩F = {0}. If z ∈ H then P (z−Pz) = Pz−P 2z = 0. So
y := z − Pz ∈ M . I.e., z = x + y with x = Pz. (Note that P is a projection onto
F .)

Proposition 5.14. Range B is closed.
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Proof. Since ker(B) is finite dimensional it has a closed complement M as in
Lemma 5.13. Then Range(B) = B(M). Suppose w is a limit point of Range(B).
Then there exists a sequence yn in M such that Byn → w. Now the proof of Lemma
5.11 shows that, as an operator from M into H, B is bounded below. That is, the
restriction B | M is bounded below. Hence the yn form a bounded sequence. We
may apply Lemma 5.9 to conclude that this sequence has a convergent subsequence
{ynk

}. Its limit v satisfies Bv = limk→∞Bynk
= w.

Proposition 5.15. If B is onto then B is one to one.

Proof. Let H0 = {0}. For n ≥ 1 let Hn = ker(Bn) then H0 ⊆ H1 ⊆ H2 ⊆ · · · .
If B is not 1:1 there exists x 6= 0 such that Bx = 0. Let x1 = x, define xn inductively
such that Bxn = xn−1. Then Bnxn = 0, Bn−1xn 6= 0. Therefore xn ∈ Hn but
xn /∈ Hn−1, hence Hn−1 is properly contained in Hn. There exists yn ∈ Hn with
‖yn‖ = 1 and ‖yn − x‖ ≥ 1/2 for all x ∈ Hn−1 (see Lemma 1.31). If n > m

Cyn − Cym = yn − [ym +Byn −Bym] = yn − x forsome x ∈ Hn−1.

So ‖Cyn −Cym‖ ≥ 1/2. Therefore C{yn} is not totally bounded, contradiction.

Proposition 5.16. If B is one to one then B is onto.

Proof. Suppose B is one to one, by Lemma 5.11, B is bounded below. It follows
that if M ⊂ H is a closed subspace then B(M) is closed also.

Suppose that Range B 6= H. Let H0 = H, H1 = BH, H2 = BH1, . . .. Then
Hm+1 is a closed and proper (because B is 1:1) subspace of Hm. By Lemma 1.31
there exists a vector xn in Hn such that ‖xn‖ = 1 and dist(xn,Hn+1) ≥ 1/2. But
then if n > m

Cxm − Cxn = xm −Bxm − xn +Bxn = xm − x where x ∈ Hm+1.

Hence ‖Cxm − Cxn‖ ≥ d(xm,Hm+1) ≥ 1/2. Thus the sequence Cxn contains no
Cauchy subsequence, contradicting the compactness of C.

Proposition 5.17. dim kerB = dim kerB∗.

Proof. Let x1, . . . , xn be a basis for kerB and let η1, . . . , ην be a basis for kerB∗.
By the Hahn–Banach theorem ∃ ξj ∈ H∗ such that

(5.4) ξj(xi) = δi,j , i, j = 1, . . . , n.

Moreover, if K = kerB∗ and x→ x̂ is the natural injection of H into H∗∗ then the
map x→ x̂ | K must map onto K∗, for if not then there is a non–zero vector u in the
finite dimensional subspace K annihilated by all such x̂. That is u(x) = x̂(u) = 0
for all x ∈ H — which means u = 0 after all. Thus there are vectors y1, . . . , yν in
H such that

(5.5) ηj(yi) = δi,j , i, j = 1, . . . , ν.

Now suppose n < ν. Define

C ′x = Cx+
n∑

j=1

ξj(x)yj .
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Then C ′ is a compact operator. If B′ = 1−C ′ then we assert B′ is one to one. For
suppose B′x0 = 0. Then

(5.6) Bx0 =
n∑

j=1

ξj(x0)yj .

But

0 = B∗ηi(x0) because ηi ∈ kerB∗

= ηi(Bx0) by definition of B∗

=
n∑

j=1

ξj(x0)ηi(yj) by (5.6)

= ξi(x0) by (5.5).(5.7)

Hence Bx0 = 0 by (5.6) and the last equality. Hence x0 =
∑n

j=1 αjxj for some
scalars αj , because x1, . . . , xn spans kerB. But by (5.7) and (5.4) αi = ξi(x0) = 0.
Hence x0 = 0. This shows kerB′ = 0.

Thus by Proposition 5.17, B′ is onto. Hence ∃ x ∈ H such that yn+1 = B′x.
But then

1 = ηn+1(yn+1) = ηn+1(B′x)

= ηn+1(Bx)− ηn+1

( n∑
j=1

ξj(x)yj

)
= (B∗ηn+1)(x)−

n∑
j=1

ξj(x)ηn+1(yj) = 0− 0.

Contradiction.
Thus we have shown n ≥ ν. I.e.,

(5.8) dim kerB ≥ dim kerB∗.

Since C∗ is also compact we have

(5.9) dim kerB∗ ≥ dim kerB∗∗.

But B∗∗ “agrees” with B on the canonical image of H in H∗∗. Hence

(5.10) dim kerB∗∗ ≥ dim kerB.

Combining (5.8), (5.9) and (5.10) shows that these are all equalities — which
proves the proposition.

Theorem 5.18. Let C be a compact operator on a Banach space H. Every non–
zero point λ of the spectrum of C is an eigenvalue of finite multiplicity. (That is,
dim ker(λ − C) is finite.) Moreover the multiplicity of λ for C is the same as for
C∗. The only possible cluster point of the spectrum of C is zero.

Proof. If λ 6= 0 is in σ(C) then 1 − λ−1C is not invertible. Since λ−1C is
compact 1 − λ−1C can fail to be invertible either because it is not one to one —
in which case λ is an eigenvalue (of finite multiplicity by Proposition 5.12 — or
because it is not onto — in which case it is also not one to one by Proposition 5.16.
If it is both one to one and onto it is of course invertible by the open mapping
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theorem (or Lemma 5.11). By Proposition 5.17 dim ker(λ− C) = dim ker(λ− C∗)
if λ 6= 0 since ker(λ− C) = ker(1− λ−1C).

Finally, to prove that zero is the only possible cluster point of σ(C) assume that
∃ λn ∈ σ(C) and that λn converges to some λ 6= 0. We may assume λn 6= λm for
m 6= n and that ∃ γ > 0 such that |λn| ≥ γ for all n. Then ∃ xn 6= 0 such that
Cxn = λnxn. We assert that the set {xn} is linearly independent. If not let n be
the first integer such that xn =

∑n−1
j=1 αjxj with some αj 6= 0. Then

λnxn = Cxn =
n−1∑
j=1

αjλjxj .

Thus

λn

n−1∑
j=1

αjxj =
n−1∑
j=1

αjλjxj

and
n−1∑
j=1

αj(λn − λj)xj = 0.

Therefore αj = 0, j = 1, . . . , n− 1 — contradiction.
Let Hn = span(x1, . . . , xn). Then Hn is a properly increasing sequence of sub-

spaces. ∃ yn such that ‖yn‖ = 1, yn ∈ Hn and ‖yn−x‖ ≥ 1
2 ∀x ∈ Hn−1 by Lemma

1.31.
Let y ∈ Hn. Then y =

∑n
j=1 αjxj , and

Cy − λny =
n∑

j=1

αj(λj − λn)xj ∈ Hn−1.

If n > m then

‖Cyn − Cym‖ = ‖(Cyn − λnyn) + λnyn − λmym + (λmym − Cym)‖
= ‖λnyn − z‖ where z ∈ Hn−1

≥ |λn|
2

≥ γ

2
.

Hence {Cym} contains no Cauchy subsequence — contradiction.

Corollary 5.19. If C has an infinite number of eigenvalues then 0 is a cluster point
of eigenvalues. Thus the eigenvalues can be arranged in a sequence converging to
zero.

Proof. If Cx = λx, x 6= 0, then

|λ|‖x‖ = ‖λx‖ = ‖Cx‖ ≤ ‖C‖ ‖x‖

Therefore |λ| ≤ ‖C‖.
The set of proper values has at least one cluster point if there are an infinite

number of them. This must be 0 by the theorem. Since only finitely many can
lie outside the disc |z| ≤ 1/n they may be arranged in a sequence converging to
zero.
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Corollary 5.20. If C is a compact normal operator on a separable complex Hilbert
space H there is a finite or infinite sequence Pn of mutually orthogonal finite di-
mensional projections such that

(5.11) C =
∞∑

n=1

λnPn (or C =
k∑

n=1

λnPn)

where {λn} are the non–zero eigenvalues of C and the series converges in the oper-
ator norm. Moreover H has an orthonormal basis consisting of eigenvectors of C
(i.e., C can be “diagonalized”).

Proof. Let

(5.12) C =
∫

σ(C)

λdE(λ)

be the spectral representation of C and let λ1, λ2, . . . be the non–zero eigenvalues
of C. Then this set is finite or else λn → 0 as n → ∞ by Corollary 5.19. Let
Pn = E({λn}). Then dimPn = multiplicity of λn < ∞. Then equation (5.12)
reduces to equation (5.11) because the functions

fn(λ) = λ · χ{λ1,λ2,...λn}(λ) =
{
λ if λ ∈ {λ1, λ2, . . . λn}
0 otherwise

form a sequence of simple functions on σ(C) which converge uniformly on σ(C) to
λ, while ∫

σ(C)

fk(λ)dE(λ) =
k∑

n=1

λnPn.

We may now choose an Orthonormal . basis x1, x2, . . . of H such that each vector
is in Range Pn for some n or is in Range E({0}) = null space C. C is diagonal on
this basis.

Exercise 5.2. Let D = {f ∈ L2(0, 1) : f is absolutely continuous on [0, 1], f ′ is
absolutely. continuous on [0, 1], f ′′ is in L2(0, 1), and f(0) = f(1) = 0}. Define
Tf = f ′′ for f in D.

a) Prove that T has a compact inverse.
b) Prove that T is self–adjoint.
c) Find the spectrum of T .
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6. Semigroups of Operators

Definition 6.1. A semigroup of operators on a Banach space B is a function
s ↪→ Ts from [0,∞) to bounded operators on B such that

a) T0 = I
b) Tt+s = TtTs for s, t ≥ 0
The semigroup is called strongly continuous if for each x ∈ B, the function

t→ Ttx is continuous from [0,∞) into B.

Example 6.2. Let A be a bounded operator on B. Define etA =
∑∞

n=0
(tA)n

n! .
This series converges in norm because ‖ (tA)n

n! ‖ ≤ ‖tA‖n

n! . Thus ‖etA‖ ≤ e‖tA‖. Any
elementary combinatorial (power series) proof that ex+y = exey shows, without
change in proof, that e(t+s)A = etAesA. Hence the function Tt = etA defines a
semigroup. This semigroup is not only strongly continuous but also norm contin-
uous, i.e., ‖etA − esA‖ → 0 as t→ s. To see this, note that

‖etA − esA‖ = ‖(e(t−s)A − 1)esA‖ ≤ ‖e(t−s)A − 1‖ ‖esA‖.

But the power series representation of e(t−s)A − 1 shows ‖e(t−s)A − 1‖ = O(t− s).
Thus ‖etA − esA‖ → 0 as t→ s.

Of course, norm continuity of any semigroup Tt is stronger than strong continuity
— as follows from ‖Ttx− Tsx‖ ≤ ‖Tt − Ts‖ ‖x‖ → 0 as t→ s. It is a fact that the
above example yields all the norm–continuous semigroups. The most important
semigroups, however, are not norm continuous. They correspond — in a sense to
be described below to an A which is unbounded.

Example 6.3. Let E(·) be a projection valued measure on the complex plane
with values which are projections on a complex Hilbert space H. Assume that the
support set of E is contained in the left half–plane C− = {z : Re z ≤ 0}. Define

Tt =
∫

C−
eztdE(z), t ≥ 0.

Since |ezt| ≤ 1 for z ∈ C− and t ≥ 0, it follows that ‖Tt‖ ≤ 1 for t ≥ 0. Moreover,
the functional calculus shows that Tt+s = TtTs and of course T0 = 1. Hence T (·)
is a semi–group. It is strongly continuous, for if x ∈ H and mx(B) = (E(B)x, x),
then we have

‖Ttx− Tsx‖2 =
∫

C−
|ezt − ezs|2dmx(z).

Since the integrand is at most 4 on C− and goes to zero pointwise as t → s, the
dominated convergence theorem shows that ‖Ttx− Tsx‖ → 0 as t→ s. Thus T (·)
is a strongly continuous semigroup.

Symbolically, if we write A =
∫

C− zdE(z), then in view of the functional calculus
definition of etA, we have Tt = etA.

As we have seen, Tt is a contraction operator (i.e., ‖Tt‖ ≤ 1) because the spec-
trum of A lies in the left half plane.

Informally, the function u(t) = etAx solves the equation

(6.1)
du

dt
= Au(t), u(0) = x.

Two important special cases are:
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1) A = i(−∆ + V ) acting in L2(Rn), where V is multiplication by a suitable
real function. In this case, iA is self–adjoint and consequently σ(A) lies on the
imaginary axis. The equation (6.1) is the Schrödinger equation.

2) A = ∆ acting in L2(Rn). In this case, A is self–adjoint and negative, so σ(A)
lies along the negative real axis. The equation (6.1) is then the heat equation.

We remark also that the wave equation ∂2u
∂t2 = ∆u can be reformulated so as to

reduce to (6.1), with σ(A) lying along the imaginary axis.

Definition 6.4. A semigroup of operators Tt is called a contraction semi–group if
‖Tt‖ ≤ 1 for all t ≥ 0. This is the most important class of semigroups.

Definition 6.5. Let Tt be a semigroup of linear operators in a Banach space B.
Define Af = limith↓0

Th−1
h f with domain DA = {f ∈ B : for which Af exists}. A

is called the infinitesimal generator of the semigroup Tt.

The basic facts about semigroups of operators are the following theorems.

Theorem 6.6. If Tt is a strongly continuous semigroup of bounded linear operators,
then its infinitesimal generator A is a closed densely defined linear operator. Tt is
uniquely determined by A in the sense that distinct semigroups have distinct infini-
tesimal generators. Moreover, if f is in DA, then u(t) = Ttf solves the differential
equation

du

dt
(t) = Au(t), t ≥ 0 with u(0) = f.

Theorem 6.7 (Hille Yosida theorem). A densely defined, closed, linear operator
A is the infinitesimal generator of a strongly continuous contraction semigroup ⇔
the positive half line (0,∞) is contained in the resolvent set of A and

‖(λ−A)−1‖ ≤ 1
λ

∀λ > 0.

For the proofs of these theorems and other exciting facts about semigroups, we
refer the reader to E. B. Dynkin, Markov Process I, pages 22–33 which present a
rather direct and self–contained account of the theory.

The earliest theorem of this type is the Stone–Von Neumann theorem.

Theorem 6.8 (Stone–Von Neumann). Every strongly continuous one parameter
unitary group U(t) on a complex Hilbert space H is of the form U(t) = eitB where
B is a self–adjoint operator. The infinitesimal generator of U(·), in the sense of
the previous definition, is precisely A = iB.

Proof. See Reed and Simon, Functional Analysis, Vol. 1, 266–267.

Exercise 6.1. A vector x in a Banach space B is called a C∞ vector for a
densely defined operator A on B if x ∈ D(An) for n = 1, 2, 3, . . .. Notation:
C∞(A) =

⋂∞
n=1D(An). Prove that if A is the infinitesimal generator of a con-

traction semigroup, Ts, on B then C∞(A) is dense in B. Hint: Consider vectors∫∞
0
g(s)Tsxds for wise choices of g.


