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1 Hilbert space and orthonormal bases

1.1 Norms, inner products and Schwarz inequality

Definition. A norm on a real or complex vector space, V is a real
valued function, ‖ · ‖ on V such that
1. a. ‖x‖ ≥ 0 for all x in V .
b. ‖x‖ = 0 only if x = O.
2. ‖αx‖ = |α|‖x‖ for all scalars α and all x in V .
3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Note that the converse of 1.b follows from 2. because ‖O‖ = ‖0O‖ =

0‖O‖ = 0.
Examples
1.1 V = R, ‖x‖ = |x|.
1.2 V = C, ‖x‖ = |x|.
1.3 V = Rn with ‖x‖ =

√∑n
1 x

2
j when x = (x1, . . . , xn).

1.4 V = Cn with ‖x‖ =
√∑n

1 |xj|2 when x = (x1, . . . , xn).
1.5 V = C([0, 1]). These are the continuous, complex valued functions on

[0, 1].
Here are two norms on V .

‖f‖1 =

∫ 1

0

|f(t)|dt (1.1) H5.1

‖f‖∞ = sup{|f(t)| : t ∈ [0, 1]} (1.2) H5.2

Exercise 1.1 Prove that the expression in (
H5.2
1.2) is a norm.

Here is an infinite family of other norms on Rn. Let 1 ≤ p <∞. Define

‖x‖p =
( n∑
j=1

|xj|p
)1/p

(1.3) H5.3

FACT: These are all norms. And here is yet one more. Define

‖x‖∞ = max
j=1,...,n

|xj| (1.4) H5.4
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Exercise 1.2 Prove that ‖x‖1 and ‖x‖∞ are norms. (Sadly, the proof that
‖x‖p is a norm is not that easy. So don’t even try. We’ll prove the p = 2
case later.)

The unit ball of a norm ‖ · ‖ on a vector space V is

B = {x ∈ V : ‖x‖ ≤ 1} (1.5)

A picture of the unit ball of a norm gives some geometric insight into the
nature of the norm. Its especially illuminating to compare norms by compar-
ing their unit balls. Lets consider the family of norms defined in (

H5.3
1.3) and

(
H5.4
1.4) on R2. The boundary of each unit ball is the curve ‖x‖ = 1 and clearly

goes through the points (1, 0) and (0, 1). Its not hard to compute that the
unit ball of ‖ · ‖∞ is a square with sides parallel to the coordinate axes. The
unit ball of ‖ · ‖2 is a disk contained in this square, and unit ball of ‖ · ‖1 is
a diamond shape thing contained in this disk. Less obvious, but reasonable,
is the fact that the other unit balls lie inside the square and contain the
diamond. Draw pictures.

Definition An inner product on a real or complex vector space V
is a function on V × V to the scalars such that
1. (x, x) ≥ 0 for all x ∈ V and (x, x) = 0 only if x = 0.
2. (ax+ by, z) = a(x, z) + b(y, z) for all scalars a, b and all vectors x, y.
3. (x, y) = (y, x).
Examples
1.6 V = Rn with (x, y) =

∑n
j=1 xjyj.

1.7 V = Cn with (x, y) =
∑n

1 xjyj
1.8 V = C([0, 1]) with (f, g) =

∫ 1

0
f(t)g(t)dt. [It would be good for you

to verify yourself that this really is an inner product.]
1.9 V = l2, which is the standard notation for the set of sequences x =

(a1, a2, . . . ) such that
∑∞

k=1 |ak|2 <∞. Define

(x, y) =
∞∑
k=1

akbk

when y = (b1, b2, . . . ). The series entering into this definition converges
absolutely because of the identity |ab| ≤ (|a|2 + |b|2)/2. [It would be very
good for you to verify that this really defines an inner product on l2.]
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Theorem 1.1 ( The Schwarz inequality.) In any inner product space

|(x, y)| ≤ (x, x)1/2(y, y)1/2 (1.6) H2

Proof: If x or y is zero then both sides are 0. So we can assume x 6= 0
and y 6= 0. In case the inner product space is complex choose α ∈ C such
that |α| = 1 and α(x, y) is real. If the inner product space is real just take
α = 1. In either case let p(t) = ‖αx+ ty‖2 for all t ∈ R. Then

0 ≤ p(t) = (αx+ ty, αx+ ty) = ‖x‖2 + t2‖y‖2 + 2t(αx, y)

because (αx, y) + (y, αx) = 2Re(αx, y) = 2(αx, y). So, by the quadratic
formula, the discriminant, b2− 4ac ≤ 0. That is , 4(αx, y)2− 4‖x‖2‖y‖2 ≤ 0.
Thus|α(x, y)|2 ≤ ‖x‖2‖y‖2. Now use |α| = 1. QED.

We are going to show next that in an inner product space one can always
produce a norm from the inner product by means of the definition

‖x‖ =
√

(x, x). (1.7) H3

Corollary 1.2 Define ‖ · ‖ by (
H3
1.7). Then

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof: Using (
H2
1.6) we find

‖x+ y‖2 = (x+ y, x+ y) = ‖x‖2 + ‖y‖2 + 2Re(x, y)

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.

QED.

Corollary 1.3 ‖ · ‖ is a norm.

Proof: Using the previous corollary its easy to verify the three properties in
the definition of a norm. QED
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1.2 Bessel’s inequality and orthonormal bases

Definition An orthonormal sequence in an inner product space is a set
{e1, e2, . . . } (which we allow to be finite or infinite) such that

(ej, ek) = 0 if j 6= k and = 1 ifj = k

Lemma 1.4 (Bessel’s inequality) Let e1, e2, . . . be an orthonormal set
in a (real or complex) inner product space V . Then for any x ∈ V

‖x‖2 ≥
∞∑
j=1

|(x, ej)|2

Proof: Let ak = (x, ek). Then, for any integer n,

0 ≤ (x−
n∑
k=1

akek, x−
n∑
k=1

akek)

= ‖x‖2 −
n∑
k=1

[ak(ek, x) + (x, ek)ak] +
∑
j,k

ajak(ej, ek)

= ‖x‖2 −
n∑
k=1

|ak|2 −
n∑
k=1

|ak|2 +
n∑
k=1

|ak|2

= ‖x‖2 −
n∑
k=1

|ak|2

So
∑n

k=1 |ak|2 ≤ ‖x‖2 for all n. Now take the limit as n→∞. QED
Definition In a vector space with a given norm we define

lim
n→∞

xn = x

to mean
lim
n→∞

‖xn − x‖ = 0.

We’re all familiar with the concept of an orthonormal basis in finite di-
mensions: e1, . . . , en is an orthonormal basis of a finite dimensional inner
product space V if

(a) the set {e1, . . . , en} is orthonormal and
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(b) every vector x ∈ V is a sum :x =
∑n

j=1 ajej.
If V is infinite dimensional then we should expect that the concept of

orthonormal basis should, similarly, be given by the requirement (a) (as
before) and (b) every vector x ∈ V is a sum

x =
∞∑
j=1

ajej. (1.8) H8

And this is right. Of course writing an infinite sum means, as usual, a limit
of finite sums: limn→∞ ‖x −

∑n
j=1 ajej‖ = 0. There is an unfortunate and

downright annoying aspect to the equation (
H8
1.8), however. We see from

Bessel’s inequality that (
H8
1.8) implies that

∑∞
k=1 |ak|2 <∞.

Suppose that we are given the orthonormal sequence {e1, e2, . . . } and a
sequence of (real or complex) numbers aj such that

∑∞
k=1 |ak|2 < ∞. Does

the series
∑∞

k=1 akek converge to some vector in V ? If not can we really say
then that we have “coordinatized” V if we don’t even know which coordinate
sequences {a1, a2, . . . } actually correspond to vectors in V (by the formula
(
H8
1.8))? Here is an example of how easily convergence of the series

∑∞
k=1 ajej

can fail, even when
∑∞

k=1 |ak|2 <∞.
Let F be the subspace of l2 consisting of finitely nonzero sequences. Thus

x ∈ F if x = (a1, . . . , an, 0, 0, 0, . . . ). F is clearly a vector space and the inner
product on l2 restricts to an inner product on F . Let e1 = (1, 0, 0, 0, . . . ), e2 =
(0, 1, 0, 0, 0, . . . ), etc. The sequence {e1, e2, . . . } is orthonormal. Let aj = 2−j.
Then

∑∞
j=1 |aj|2 < ∞. Now the sequence of partial sums, xn =

∑n
1 ajej

converges to the vector x =
∑∞

1 ajej in l2 (you verify this). But x is not
in F . So there is no vector in F whose coodinates are the nice sequence
{2−j}. Of course we caused this trouble by making “holes” in l2. These
circumstances are analogous to the “holes” in the set Q of rational numbers.
For example the sequence sn =

∑n
k=1 1/k! is a sequence of rational numbers

whose limit is e. But e is not rational. So there is a hole in Q at e. Question:
Can you immagine how intolerably complicated calculus would be if we had
to worry about these holes in Q? (E.g. f ′(x) = 0 gives the maximum of F
on Q provided x is rational!) The same nuisance would arise if we allowed
holes when dealing with ON bases. We are going to eliminate holes!

Definition. A sequence x1, x2, . . . in a normed vector space is a Cauchy
sequence if

lim
n,m→∞

‖xn − xm‖ = 0.
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That is, for any ε > 0 there is an integer N such that ‖xn−xm‖ < ε whenever
n and m ≥ N .

Remark. If xn converges to a vector x in any normed space then the
sequence is a Cauchy sequence. Proof: Same as proof of Proposition

propR3
9.3 in

the Appendix. Just replace | · | by ‖ · ‖.
Definition. A normed vector space is complete if every Cauchy sequence

in V has a limit in V . A Banach space is a normed vector space which is
complete.

Examples. The spaces V in Examples 1.1 to 1.4 are complete.
[You’re supposed to know this from first year calculus.]
In Example 1.5 the space C([0, 1]) is complete in the norm ‖f‖∞ but not

in the norm ‖f‖1. [See if you can prove both of these statements.]
Definition. A Hilbert space is an inner product space which is complete

in the associated norm (
H3
1.7).

Examples. The Examples 1.6, 1.7, 1.9 are Hilbert spaces. But Example
(1.8) is not complete. The proof that Example 1.9 is complete will be given
only on popular demand. It is extremely unfortunate that the Example 1.8
is not complete. In order to get a complete space one must throw in with
the continuous functions all the functions whose square is integrable. This is
such an important example that it gets its own notation.

Notation.

L2(0, 1) is the set of functions f : (0, 1) → C such that

∫ 1

0

|f(t)|2dt <∞

For these functions we define

(f, g) =

∫ 1

0

f(t)g(t)dt

This is an inner product on L2(0, 1) (easy to verify) and the associated norm
is

‖f‖ =

√∫ 1

0

|f(t)|2dt

Of course if we wish to consider square integrable functions on some other
set, such as R we would denote it by L2(R).

Just as the real numbers fill in the “holes” in the rational numbers so
also one may view L2(0, 1) as filling in the “holes” in C([0, 1]). Here is the
definition that makes this notion precise.
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Definition. A subset A of a Hilbert space H is called dense if for any
x ∈ H and any ε > 0 there is a vector y in A such that ‖x − y‖ < ε. In
words: you can get arbitrarily close to any vector in H with vectors in A. As
we know, the rational numbers are dense in the real numbers. For example
the rational number 3.141592650000000 is pretty close to π. Similarly, if you
cut off the decimal expansion of a real number at the twentieth digit after
the decimal point then you have a rational number which is very close to the
given real number.

GOOD NEWS: C([0, 1]) is dense in L2(0, 1). You may use this fact when-
ever you find it convenient. Its often best to prove some formula for an easy
to handle dense set first, and then show that it automatically extends to the
whole Hilbert space. We’ll see this later in the context of Fourier transforms.

Here is the first important consequence of completeness.

lem1.5 Lemma 1.5 Suppose that H is a Hilbert space and that {e1, e2, . . . } is any
ON sequence. Let ck be any sequence of scalars such that

∑∞
k=1 |ck|2 < ∞.

Then the series
∞∑
k=1

ckek

converges to some unique vector x in H.

Proof: Let sn =
∑n

k=1 ckek. We must show that the sequence con-
verges to a vector in H. Since we don’t know in advance that there is a
limit, x, to which the sequence converges we will show instead that the se-
quence is a Cauchy sequence. Suppose that n > m. Then ‖sn − sm‖2 =
‖

∑n
k=m+1 ckek‖2 =

∑n
k=m+1 |ck|2 → 0 as m,n → ∞ because the series∑∞

k=1 |ck|2 converges. Now, because H is assumed to be complete, we know
that there exists a vector x in H such that limn→∞ sn = x. Since limits are
unique, x is unique. (You prove this on the way to your next class.) Of
course we will write

x =
∞∑
k=1

ckek, (1.9)

keeping in mind that this means that x is the limit of the finite sums. QED.

Lemma 1.6 In any inner product space the function x→ (x, y) is continu-
ous for each fixed element y.
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Proof. If xn → x then |(xn, y)− (x, y)| = |(xn − x, y)| ≤ ‖xn − x‖‖y‖ → 0.
QED

Of course (x, y) is also a continuous function of y for each fixed x. One
can either repeat the preceding proof or just use (y, x) = (x, y).
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thmH.5 Theorem 1.7 Let e1, e2, . . . be an orthonormal sequence in a (real or com-
plex) Hilbert space H. Then the following are equivalent.

a. e1, e2, . . . is a maximal ON set. That is, it is not properly contained
in any other ON set.

b. For every vector x ∈ H we have

x =
∞∑
k=1

akek where ak = (x, ek)

c. For every pair of vectors x and y in H we have

(x, y) =
∞∑
k=1

akbk where ak = (x, ek) and bk = (y, ek)

d. For every vector x in H we have

‖x‖2 =
∞∑
k=1

|ak|2

Proof: We will show that a. =⇒ b. =⇒ c. =⇒ d. =⇒ a.
Assume that a. holds. Let x ∈ H. By Bessel we have

∑∞
1 |ak|2 <∞. By

Lemma
lem1.5
1.5, y ≡

∑∞
1 akek exists. But (x−y, ej) = aj−limn→∞(

∑n
k=1 akek, ej) =

aj − aj = 0 for all j. If x 6= y then let h = (x − y)/‖x − y‖. One can now
adjoin h to the original set and obtain a larger ON set. So we must have
x− y = 0. This proves that b. holds.

Assume now that b. holds. Then

(x, y) = lim
n→∞

(
n∑
j=1

ajej, y) = lim
n→∞

lim
m→∞

(
n∑
j=1

ajej,

m∑
k=1

bkek)

= lim
n→∞

lim
m→∞

min n,m∑
j=1

ajbj =
∞∑
j=1

ajbj.

So c. holds.
Next, assume that c. holds. Put y = x to derive that d. holds.
Finally, assume that d. holds. If e1, e2, . . . is not a maximal ON set

then there exists a vector x 6= 0 such that (x, ek) = 0 for all k. So the
“coordinates”, ak = (x, ek) are all zero. But from d. we see that ‖x‖2 =∑∞

k=1 |ak|2 = 0. So x = 0. Contradiction. QED.
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Now we’re ready for the definition of ON basis.
Definition. An ON sequence {e1, e2, . . . } in a Hilbert space H is an ON

basis of H if condition b. in Theorem
thmH.5
1.7 holds.

Of course we could have used any of the other conditions in Theorem
thmH.5
1.7

for the definition of ON basis because they’re equivalent. So why did I use
condition b. for the definition? Because surveys of your predecessors show
that it’s the most popular.
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1.3 Problems on Hilbert space

1. Let f1, f2, . . . , f9 be an orthonormal set in L2(0, 1). Assume that

(A)

∫ 1

0

6xf1(x)dx = 2 and

(B)

∫ 1

0

6xf2(x)dx = 2
√

2

What can you say about the value of∫ 1

0

6xf5(x)dx?

Give reasons.

2. Let
u1(x) = 1/

√
2, −1 ≤ x ≤ 1

and

u2(x) =

√
3

2
x, −1 ≤ x ≤ 1.

Suppose that f and g are in L2([−1, 1]) and ‖f − g‖ ≤ 5. Let aj =∫ 1

−1

uj(x)f(x)dx, j = 1, 2 and bj =

∫ 1

−1

uj(x)g(x)dx. Show that
2∑
j=1

|aj −

bj|2 ≤ 25. Cite any theorem you use.

3. Suppose that f : [−1, 1] → R satisfies∫ 1

−1

|f(x)|2dx = 21

and ∫ 1

−1

f(x)dx = 6.

What can you say about the size of
∫ 1

−1
xf(x)dx?

4. Suppose that u1, u2 are O.N. vectors in an inner product space H. Let
f ∈ H and assume that

‖f‖2 = |a1|2 + |a2|2

where aj = (f, uj) for j = 1, 2. Show that f = a1u1 + a2u2.
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5. The Hermite polynomials are the sequence of polynomials Hn(x)
uniquely determined by the properties:

a) Hn(x) is a real polynomial of degree n, n = 0, 1, 2, . . . with positive
leading coefficient.

b) The functions

un(x) = Hn(x)e
−x2/4

form an O.N. sequence in L2(R).

Fact that you may use: If f is in L2(R) and

∫ ∞

−∞
f(x)un(x)dx = 0 for

n = 0, 1, 2, . . . then f = 0.

Let cn =

∫ ∞

−∞
e−|x|un(x)dx.

Evaluate
∞∑
n=0

c2n.

6. Let {f1, f2, . . .} be an O.N. set in a Hilbert space H. Prove that it is
an O.N. basis if and only if the finite linear combinations

n∑
j=1

ajfj (n finite but arbitrary)

are dense in H.

7. Let {f1, f2, . . .} be an O.N. set in a Hilbert space H. Prove that it is an
O.N. basis if and only if Parseval’s equality

‖g‖2 =
∞∑
j=1

|(fj, g)|2

holds for a dense set of g in H.

8. Suppose that {f1, f2, . . .} is an O.N. basis of a Hilbert space H and
that {g1, g2, . . .} is an O.N. sequence in H. Suppose further that

∞∑
j=1

‖gj − fj‖2 < 1.

Prove that {g1, g2, . . .} is also an O.N. basis.
Hint: Use Theorem

thmH.5
1.7 by supposing that there exists h 6= 0 such that

(h, gj) = 0 for all j.
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2 Second order linear ordinary differential equa-

tions

2.1 Introduction

Consider the differential equation

u′′(x)− u(x) = f(x) (2.1) O1

on the interval 0 ≤ x ≤ 1. Here f is a given function on this interval.
As you know, the solution to a second order ordinary differential equation
requires specification of some additional information in order for the ODE
to pick out a solution uniquely. For example one might specify u(0) = 3 and
u′(0) = 5 to pick out a unique solution to (

O1
2.1). This is the initial value

problem: both pieces of information are specified at the same endpoint. We
are going to be primarily concerned with the boundary value problem: the
two pieces of information will be specified at opposite endpoints. Let’s focus
on the boundary value problem for the differential equation (

O1
2.1) given by

the boundary data
u(0) = 0, u(1) = 0. (2.2) O2

Our goal is to show that the solution to (
O1
2.1) and (

O2
2.2) can be represented

in the form

u(x) =

∫ 1

0

G(x, y)f(y)dy (2.3) O3

for some function G(x, y). G is called the Green function for the boundary
value problem (

O1
2.1), (

O2
2.2). Here is the method for constructing the Green

function in this simple example.
STEP 1. Consider first the homogeneous version of (

O1
2.1), namely

u′′ − u = 0 (2.4) O4

Since this equation has constant coefficients its easy to write down the general
solution. It is

u(x) = A sinh x+B coshx

We will need first to find the solutions which satisfies the LEFT HAND
boundary condition u(0) = 0. These are clearly given by choosing B = 0.

15



We will see later that our procedure doesn’t care what A is. So lets just
choose A = 1. Denote the solution that we’ve now got by U . So

U(x) = sinhx

STEP 2. Do the same thing all over again, but using the RIGHT HAND
boundary condition. To this end we may write the general solution to (

O4
2.4)

in the form
u(x) = C sinh(x− 1) +D cosh(x− 1)

A solution that satisfies the right hand boundary condition is

V (x) = sinh(x− 1)

(and this is the only one, up to a scalar multiple.)
STEP 3. Define

W (x) = det

(
U(x) U ′(x)
V (x) V ′(x)

)
Inserting our particular U and V we can compute that

W (x) = sinh 1 0 ≤ x ≤ 1 (2.5) O5

STEP 4. Define

G(x, y) =

{
U(x)V (y)
W (y)

, for 0 ≤ x ≤ y ≤ 1
U(y)V (x)
W (y)

, for 0 ≤ y ≤ x ≤ 1.
(2.6) O6

In our case this expression reduces to

G(x, y) =

{
(sinhx) sinh(y−1)

sinh 1
, for 0 ≤ x ≤ y ≤ 1

(sinh y) sinh(x−1)
sinh 1

, for 0 ≤ y ≤ x ≤ 1.

Notice that on the overlapping portion of these definitions, namely on the di-
agonal x = y, the two halves of these formulas agree. So the function G(x, y)
is well defined even on the diagonal of the square [0, 1] × [0, 1]. Moreover,
for each x, G(x, y) is a continuous function of y and for each y G(x, y) is a
continuous function of x because the limits from the left and right (or up to
down) agree on the diagonal.

NOW let

u(x) =

∫ 1

0

G(x, y)f(y)dy (2.7) O8
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for ANY continuous function f .
I claim that u is a solution to the boundary value problem (

O1
2.1), (

O2
2.2).

The easy part of this is seeing that the function u in (
O8
2.7) satisfies the two

boundary conditions (
O2
2.2). Indeed the definition of G shows that G(0, y) = 0

for all y and G(1, y) = 0 for all y. This is why we chose U and V as we
did. So u is zero at the two boundaries. To prove that u satisfies (

O1
2.1) we

must differentiate the right side of (
O8
2.7) a couple of times. The naive reader

(not you) might think that we can just put d2/dx2 under the integral sign.
But if you do this you will find (d2/dx2)G(x, y)−G(x, y) = 0 on each half of
the square because both U(x) and V (x) satisfies this equation. This would
then give u′′ − u = 0, which is not what we want. So here is what we must
do. There is trouble with G(x, y) as x passes through y. Although G(x, y) is
continuous in x for fixed y its first derivative, Gx(x, y), actually has a jump
as x passes y, as we will see in a moment. So Gxx(x, y) doesn’t even exist
at x = y. To deal with this we just put the trouble spot into the limits of
integration thus:

u(x) =

∫ x

0

G(x, y)f(y)dy +

∫ 1

x

G(x, y)f(y)dy.

In each integral the integrand is a nice function of x, provided y is where
the limits of integration allow it to go. There is never a crossing over the
diagonal. Here is the computation. As you know there is a contribution to
the derivative of u from the x that occurs in the limits of integration.

u′(x) = G(x, x−)f(x)−G(x, x+)f(x) (2.8)

+

∫ x

0

Gx(x, y)f(y)dy +

∫ 1

x

Gx(x, y)f(y)dy (2.9)

In the first line the expression x− indicates that we are letting y approach
x from below, as it should, while x+ indicates that y is approaching x from
above. But now recall that you admitted a while back that the function
y 7→ G(x, y) is continuous. Therefore the first line is zero. So

u′(x) =

∫ x

0

Gx(x, y)f(y)dy +

∫ 1

x

Gx(x, y)f(y)dy, (2.10) O11

which is just what we would have gotten if we had simply put d/dx under
the integral in (

O8
2.7). But the next time we won’t be so lucky. We’re going to
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repeat this procedure for the second derivative. But we’ll see that the “first
line” is not zero this time. We find from (

O11
2.10)

u′′(x) = Gx(x, x
−)f(x)−Gx(x, x

+)f(x)

+

∫ x

0

Gxx(x, y)f(y)dy +

∫ 1

x

Gxx(x, y)f(y)dy (2.11) O12

This time the first line does not give zero because Gx(x, y) has a jump as y
passes by x. How much is the jump? Just look at the definition of G and
the definition of W : Gx(x, y) = U(y)V ′(x)/W (y) if y < x. So Gx(x, x

−) =
U(x)V ′(x)/W (x). Similarly Gx(x, x

+) = U ′(x)V (x)/W (x). So

Gx(x, x
−)−Gx(x, x

+) =
U(x)V ′(x)− U ′(x)V (x)

W (x)

= 1. (2.12) O13

Ha! So the first line in (
O12
2.11) is just f(x). But we have already observed that

Gxx(x, y) = G(x, y) (at least when y 6= x, and this is where y is ranging in the
two integrals.) Putting this together we now find that u′′(x) = f(x) + u(x),
which is exactly the equation (

O1
2.1). Thus u(x), as given by (

O8
2.7), satisfies

both (
O1
2.1) and (

O2
2.2). So G(x, y) is the Green function for the boundary value

problem (
O1
2.1),(

O2
2.2).

Our aim in this section is to carry out this procedure for a general second
order ordinary differential equation. To this end we must be able to construct
the functions U and V and understand the function W . All of these are issues
pertaining to the initial value problem, which is much easier to deal with than
the boundary value problem and whose basic theory we will review in the
next section.

But before leaving this successful example lets rewrite informally the
preceeding computations. We actually showed that

(d2/dx2 − 1)

∫ 1

0

G(x, y)f(y)dy = f(x) (2.13) O18

If we (innocently) rewrite this as∫ 1

0

(d2/dx2 − 1)G(x, y)f(y)dy = f(x)
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then we could claim that we have shown that

(d2/dx2 − 1)G(x, y) = δ(x− y). (2.14) O20

And what does (
O20
2.14) mean? It means exactly that (

O18
2.13) holds, which we

have proved. So if you are fond of δ functions (and who isn’t) then all is well.

In truth, this neat approach to Green functions, as embodied in the fun-
damental formula (

O6
2.6), can break down for a general second order differential

equation. We need to see how this can happen before proceeding to a general
second order ODE. Here is a simple example of

BREAK DOWN

Lets modify the equation (
O1
2.1) slightly. Consider the equation

u′′(x) + π2u(x) = f(x) 0 ≤ x ≤ 1. (2.15) O21

The general solution to the corresponding homogeneous equation u′′+π2u =
0 is u(x) = A sin(πx) + B cos(πx). Since cos 0 6= 0 and cos π 6= 0 the
desired function U is U(x) = sin(πx) and the desired function V is ALSO
V (x) = sin(πx). Consequently W (x) = 0 for all x.!! The formula (

O6
2.6) is

now meaningless.!!! That’s life. So is there a Green function? Answer: No.
It will be important for us to understand exactly why and when such failure
occurs.

2.2 The initial value problem.

We consider a closed bounded interval [a, b]. We wish to study several prob-
lems associated with the differential operator

(Lu)(x) = p2(x)u
′′(x) + p1(x)u

′(x) + p0(x)u(x). (2.16) 1.1

We will assume throughout that the coefficients pj are continuous on [a, b]
and that p2(x) > 0 on the entire closed interval.

thmO1 Theorem 2.1 (Existence and uniqueness for the initial value problem)
Let f be a continuous function on [a, b] and let c and c′ be two real num-

bers. Then there exists a unique function u ∈ C2([a, b]) satisfying

Lu(x) = f(x) for all x ∈ [a, b] and u(a) = c and u′(a) = c′. (2.17) 1.2
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Proof: Use Picard’s method. See e.g. Kreyszig “Advanced Engineering
Mathematics”

defWronsk Definition 2.2 (Wronskian) Let f and g be two functions in C1([a, b]). The
Wronskian of f and g is the function

W (f, g)(x) = det

(
f(x) f ′(x)
g(x) g′(x)

)
(2.18) 1.3

Recall that f and g are said to be linearly dependent on [a, b] if there are
constants α and β such that

αf(x) + βg(x) ≡ 0

In this case we may differentiate this equation and find that

αf ′(x) + βg′(x) ≡ 0

when f and g are differentiable. This shows that the rows of the matrix in
(
1.3
2.18) are linearly dependent for every x ∈ [a, b]. Hence W (f, g) ≡ 0. This

proves

lemO3 Lemma 2.3 If f and g are in C1([a, b]) and are linearly dependent on the
interval [a, b] then

W (f, g)(x) = 0 for all x ∈ [a, b].

The partial converse of this is a little bit more subtle.

Lemma 2.4 Let u and v be two solutions of Lu = 0. Then u and v are
linearly independent on [a, b] if and only if W (u, v) is nowhere zero.

Proof: Assume Lu = Lv = 0. If, for some point x0 one has W (u, v)(x0) =
0 then the points (u(x0), u

′(x0)) and (v(x0), v
′(x0)) in the plane are linearly

dependent vectors in R2. Therefore there exist nonzero constants α, β such
that

αu(x0) + βv(x0) = 0 and αu′(x0) + βv′(x0) = 0.

Let g(x) = αu(x) + βv(x). Then Lg = 0. But g(x0) = 0 and g′(x0) = 0.
Therefore g(x) = 0 for all x ∈ [a, b] by the uniqueness portion of Theorem
thmO1
2.1. Hence u and v are linearly dependent on [a, b]. Conversely, if u and v are
linearly dependent on [a, b] then Lemma

lemO3
2.3 shows that W (u, v) is identically

zero (even if u and v are not solutions to Lu = 0.)
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2.3 The boundary value problem and Green functions

thmO2 Theorem 2.5 Let

L(u) = p2(x)u
′′ + p1(x)u

′ + p0(x)u (2.19)

A(u) = αu(a) + α′u′(a) (2.20)

B(u) = βu(b) + β′u′(b) (2.21)

for u ∈ C2([a, b]), where p0, p1, p2 are in C([a, b]), α, α′, β, β′ are real
numbers, and p2 > 0 on [a, b]. Then the inhomogenous system

1) L(w) = f ∈ C([a, b])
A(w) = α1

B(w) = β1

has a solution for all f , α1, β1 if and only if the homogeneous system

2) L(u) = 0
A(u) = 0
B(u) = 0

has no non–zero solution.

Proof: Define functions U , V , and F with the aid of the basic existence
and uniqueness theorem, Theorem

thmO1
2.1, so as to satisfy

L(U) = 0, U(a) = α′, U ′(a) = −α (2.22)

L(V ) = 0, V (b) = β′, V ′(b) = −β (2.23)

L(F ) = f, F (a) = F ′(a) = 0 (2.24)

Then clearly A(U) = 0 and B(V ) = 0.
Thus for Dirichlet boundary conditions [α = 1, α′ = 0, β = 1, β′ = 0], U

and V look like this

Let
w = cU + dV + F.
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Then

L(w) = f (2.25)

A(w) = dA(V ) (2.26)

B(w) = cB(U) (2.27)

Now assume that the system 2) has no non–zero solutions. Since L(U) =
A(U) = 0 it then follows that B(U) 6= 0. Similarly A(V ) 6= 0. Hence for any
α1, β1 we may choose c and d so that w satisfies 1).

Conversely assume that 1) has a solution for all f1, α1, β1 and that 2) has
a solution u not identically zero. Then there exists a function v such that

L(v) = 0 (2.28)

A(v) = 0 (2.29)

B(v) = 1 (2.30)

But (u(a), u′(a)) ∈ R2 is orthogonal to (α, α′) as is also (v(a), v′(a)) and
neither is zero — by uniqueness theorem. Hence one is a multiple of the
other. Say c(u(a), u′(a)) = (v(a), v′(a)). Then the function cu − v has zero
initial data at a and satisfies L(cu − v) = 0. cu − v = 0 on [a, b]. But
B(u) = 0. B(v) = 0, contradiction.

Corollary 2.6 If the system 2) has no non zero solution then

a) the functions U and V constructed in the previous proof are linearly
independent and

b) their Wronskian W is nowhere zero.

Proof: It suffices to show U and V are linearly independent. If they aren’t
then there exists a constant c such that U = cV . But then B(U) = cB(V ) =
0. So U satisfies 2). But U is not identically zero on [a, b].

thmO3 Theorem 2.7 (Green function.) Assume that the system 2) has no non–
zero solution. Then the system

L(u) = f

A(u) = 0

B(u) = 0 (2.31) 2.1
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has the unique solution

u(x) =

∫ b

a

G(x, y)f(y)dy (2.32) 2.2

where

G(x, y) =

{
U(x)V (y)/(p2(y)W (y)) a ≤ x ≤ y ≤ b

U(y)V (x)/(p2(y)W (y)) a ≤ y ≤ x ≤ b
(2.33) 2.3

and
W = UV ′ − V U ′. (2.34) 2.4

Proof. As in the introduction to this section we are going to have to break
up the integral into two parts to take into account the jump in the derivative
of G. Thus we will write

u(x) =

∫ b

a

G(x, y)f(y)dy (2.35)

=

∫ x

a

G(x, y)f(y)dy +

∫ b

x

G(x, y)f(y)dy. (2.36) 2.5

The derivative of each integral with respect to x will have two terms, corre-
sponding to the two appearances of x. Differentiating first with respect to
the x that appears in the limits of the integrals the fundamental theorm of
calculus gives

u′(x) = G(x, x−)f(x)−G(x, x+)f(x) (2.37)

+

∫ x

a

Gx(x, y)f(y)dy +

∫ b

x

Gx(x, y)f(y)dy. (2.38)

Thus the contribution to u′(x) from the limits cancel because G(x, y) is con-
tinuous in y at y = x. We therefore find

u′(x) =

∫ x

a

Gx(x, y)f(y)dy +

∫ b

x

Gx(x, y)f(y)dy. (2.39) 2.6

We need now the key identity that describes the jump of the first derivative
of G. It is

Gx(x, x
−)−Gx(x, x

+) =
1

p2(x)
(2.40) 2.6.1
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This may be derived from (
2.3
2.33). Just imitate the derivation of (

O13
2.12). Now

differentiate (
2.6
2.39) to find

u′′(x) = Gx(x, x
−)f(x)−Gx(x, x

+)f(x) (2.41)

+

∫ x

a

Gxx(x, y)f(y)dy +

∫ b

x

Gxx(x, y)(y)f(y)dy. (2.42)

= f(x)/p2(x) +

∫ x

a

Gxx(x, y)f(y)dy +

∫ b

x

Gxx(x, y)(y)f(y)dy. (2.43)

Hence multiplying by p2(x) we find

p2(x)u
′′(x) = f(x) (2.44)

+

∫ x

a

p2(x)Gxx(x, y)f(y)dy +

∫ b

x

p2(x)Gxx(x, y)f(y)dy. (2.45) 2.7

Now multiply (
2.5
2.36) by p0(x) and multiply (

2.6
2.39) by p1(x) and add them to

(
2.7
2.45) to find

Lu(x) = f(x) +

∫ x

a

(LxG(x, y))f(y)dy +

∫ b

x

(LxG(x, y))f(y)dy (2.46)

= f(x) (2.47)

because LxG(x, y) = 0 off the diagonal. Finally, just as in the simple example
in the introduction, the reader may verify that, for each y ∈ (a, b), the
function x 7→ G(x, y) satisfies the boundary conditions in (

2.1
2.31). Hence so

does u, by (
2.5
2.36) and (

2.6
2.39).

Definition 2.8 (Eigenvalue.) A complex number λ is called an eigenvalue
of the differential operator L with boundary conditions given by A and B if
there exists a function u in C2([a, b]) such that

Lu = λu (2.48)

A(u) = 0 (2.49)

B(u) = 0. (2.50)

The function u is called an eigenfunction with eigenvalue λ.

Definition 2.9 The differential operator L is called symmetric on [a, b] if

(Lu, v) = (u, Lv)

for all u and v in C2([a, b]) which are zero in a neighborhood of each endpoint.
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Fact: If L is symmetric then L must have the form given in the next
theorem (wherein we change notational and sign conventions, taking p2(x) =
−p(x) < 0.) (Give a little try to find a proof of this fact by yourself.)

thmO5 Theorem 2.10 Let p and q be continuous functions on [a, b] with p(x) > 0
for all x ∈ [a, b]. Let

Lu = −
[ d
dx

(p(x)u′(x))− q(x)u(x)
]

(2.51)

A(u) = αu(a) + α′u′(a) (2.52)

B(u) = βu(b) + β′u′(b). (2.53)

Put

(u, v) =

∫ b

a

u(x)v(x)dx.

Then (Lu, v) = (u, Lv) if u and v ∈ C2([a, b]) and A(u) = B(u) = A(v) =
B(v) = 0.

Moreover there exists a strictly increasing sequence λn of real eigenvalues
for the operator L with boundary conditions A(u) = 0, B(u) = 0. In fact one
has limλn = ∞. The corresponding eigenfunctions un may be chosen real.
Assume they are normalized:∫ b

a

|un(x)|2dx = 1.

Then the sequence u1, u2, . . . forms an O. N. basis of L2(a, b).

2.4 Eigenfunction expansion of the Green function

We are going to use the notation

(Ku)(x) =

∫ b

a

K(x, y)u(y)dy

whenever K(x, y) is a function on the square [a, b] × [a, b]. The operator
u 7→ Ku is called an integral operator. You can see from the repeated use of
such expressions in the previous sections that this is a useful notation.
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Let

Lu = − d

dx

(
p(x)

du

dx

)
+ q(x)u(x) (2.54)

A(u) and B(u) as usual. (2.55)

If λ is not an eigenvalue of L for the boundary conditions A = 0, B = 0 then
(L− λ)−1 exists and is given by a Green function Gλ(x, ξ):

(L− λ)u = f ⇒ u =

∫ b

a

Gλ(x, ξ)f(ξ)dξ.

Let λ1, λ2, . . . , be the eigenvalues of L and u1, u2, . . . the corresponding nor-
malized (real) eigenfunction. Then

thmO6 Theorem 2.11

Gλ(x, y) =
∞∑
j=1

1

λj − λ
uj(x)uj(y).

Informal Proof: We assume all series converge and all interchanges are
legal.

Let

Kλ(x, y) =
∞∑
j=1

1

λj − λ
uj(x)uj(y).

Now ∫ b

a

Kλ(x, y)un(y)dy =
∞∑
j=1

1

λj − λ

∫ b

a

u(j(x)uj(y)un(y)dy (2.56)

=
1

λn − λ
un(x). (2.57)

because all the other terms are zero. We may write this as

Kλun =
1

λn − λ
un

Therefore
(L− λ)(Kλun) = un
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But (L− λ)Gλ = Identity. So

(L− λ)Kλun = un = (L− λ)Gλun.

Therefore Kλun = Gλun for all n because L− λ has trivial nullspace. Thus,
for each x

(Kλ(x, ·), un) = (Gλ(x, ·), un) ∀n

Therefore
Kλ(x, y) = Gλ(x, y).

This “proves” Theorem
thmO6
2.11. “QED”
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2.5 Problems on ordinary differential equations

1. Apply Picard’s iteration method to the following initial value problem.
Find y1(x), y2(x), y3(x).

y′ = 1 + xy, y(0) = 1

Ref: Kreyszig, Advanced Engineering Mathematics (sec.1.11 in 3rd edi-
tion)

2. Determine which of the following operators are symmetric on the interval
[1, 5]

a) Lu =
d2u

dx2
+ 3

du

dx
+ 5u.

b) Lu =
d2u

dx2
+ 4u.

c) Lu =
d2u

dx2
+ 9π2u.

3. Determine which of the operators in Problem 2 have inverses for the
boundary conditions u′(1) = u′(5) = 0 and for these operators find the
Green functions.

4. Let
Lu = x2u′′ + 2xu′ on [1, 3].

a) Show that L is symmetric on this interval.

b) Find the Green function for L under Dirichlet boundary conditions:
u(1) = u(3) = 0.

c) For the same boundary conditions find the eigenfunctions and eigen-
values of L.

Hint: Equations of the form ax2u′′ + bxu′ + cu = 0 tend to have two linearly
independent solutions of the form u = xα, α complex. When only one can
be found in this form then xα lnx will give another one.

5. Prove the Fact preceding Theorem
thmO5
2.10.
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3 Generalized functions. (δ functions and all

that.)

3.1 Dual spaces

The concept of a dual space arises naturally in differential geometry, mechan-
ics and general relativity. And we will need it later to understand generalized
functions.

Definition 5.1 Let V be a real or complex vector space. A function L :
V → scalars is called a linear functional if

L(αx+ βy) = αL(x) + βL(y)

for all x and y in V and for all scalars α and β. In other words a linear
functional is a linear transformation from V into R (or C if V is a complex
vector space.) The dual space to V is the set, denoted V ∗, of all linear
functionals on V .

For example the function which is identically 0 is a linear functional.
(Check this against the definition.) Moreover if L1 and L2 are linear func-
tionals then so is the function aL1 + bL2 for any scalars a and b. (Check this
against the definition now!) Therefore V ∗ is itself a vector space. Its a new
vector space constructed from the old one.

Example 5.2. Denote by P3 the vector space consisiting of polynomials
of degree less or equal to 3. This is a four dimensional vector space because
{1, t, t2, t3} constitutes a basis. Here are some linear functionals on this space.

1. p 7→ L1(p) = p(7).

2. p 7→ L2(p) =
∫ 1

0
p(t)dt.

3. p 7→ L3(p) =
∫ 5

0
p(t) sin tdt.

[It would be best if you, personally, verify that each of these functions on
P3 are linear functionals.]

The thing to take away from these examples is that there is no resem-
blance between V and V ∗: you cannot really “identify” any of these three
linear functionals on P3 with elements of P3 itself. RIGHT? V ∗ is really a
different vector space from V itself. We have constucted a new vector space
from the given one. This being the case, you have to regard the following
theorem as remarkable.
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Theorem 5.3 If V is an n-dimensional vector space then so is V ∗.
Proof. Let e1, ...en be any basis of V . Then any vector x ∈ V can be

uniquely written

x =
n∑
j=1

ajej (3.1) 5.1

Uniqueness means that each aj is a function of x. Define

Lj(x) = aj, j = 1, ..., n.

Its straightforward to check that each function Lj is a linear functional. We
will show that they form a basis of V ∗.

1. They are linearly independent. Proof: Suppose thatM :=
∑n

j=1 cjLj =
0. Then 0 = M(ek) =

∑n
j=1 cjLj(ek) =

∑n
j=1 cjδjk = ck. So all the coeffi-

cients ck are zero. Hence the functionals Lj are linearly independent.
2. They span V ∗. Proof: Let L be any linear functional. Define ck =

L(ek). Claim: Then L =
∑n

k=1 ckLk. You can check this yourself by showing
that both sides of this equation agree on each ej and therefore on all linear
combinations of the ej. Thus they agree on all of V .

So we have now produced a basis of V ∗ consisting of n elements. Hence
dimV ∗ = n. QED.

Terminology:5.4 The basis Lj described in the preceding proof is called
the dual basis to the basis e1, ..., en. It has the nice property that

Lj(ek) = δjk

Philosophic considerations 5.5. Having chosen the basis e1, ..., en of
V we see that we automatically get a basis L1, ..., Ln of V ∗. Since any vector
x in V can be written uniquely in the form (5.1) we can now define a vector
Lx in V ∗ by the formula

Lx =
n∑
j=1

ajLj

In this way we get a map x 7→ Lx from V onto V ∗. You can check easily
that this map is a) linear, b) one-to-one and c) onto V ∗. This is, as some
people would say, an isomorphism from V onto V ∗. With the help of this
map we could, if we wished, identify V and V ∗ and even go so far as to say
that V and V ∗ are the “same” space. But there is a catch: A choice of basis
has been made in constructing this isomorphism. If Jim goes into one room
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and chooses a basis e1, ..., en to construct this isomorphism and Jane goes
into another room and chooses a basis the chances are that they will choose
different bases. Then they will arrive at different isomorphisms. So each
one will identify V with V ∗ in different ways. Jim will say that the vector
x ∈ V corresponds to a certain linear functional L and Jane will say, no, it
corresponds to a different linear functional, M .

When an isomorphism between two vector spaces depends on someone’s
choice of a basis we say that the isomorphism is not natural. If you should
nevertheless decide to think of these two vector spaces as the “same” (i.e.
identify them) then sooner or later you will run into conceptual and even
computational trouble.

But there is an important circumstance in which one really can justify
identifying V and V ∗. (Some readers might recognize the next theorem as
“raising and lowering” indices.)

Theorem 5.6. Suppose that V is a real finite dimensional vector space
and (·, ·) is a given inner product on V . Then for any linear functional L on
V there is a unique vector y in V such that

L(x) = (x, y) for all x ∈ V.

Denote by Ly the linear functional determined by y in this way. That is,

Ly(x) = (x, y) for all x ∈ V. (3.2) 5.10

Then the map
y 7→ Ly

is a one-to-one linear map of V onto V ∗. (I.e. it is an isomorphism.)
Proof. The map y 7→ Ly is clearly linear. (You better check this. It will

be good practice in dealing with these structures.) Moreover this map is one-
to-one because if Ly = 0 then in particular Ly(y) = 0. That is, (y, y) = 0.
So y = 0. Therefore the map y 7→ Ly is one-to-one. Hence, by the rank
theorem, the range of this map has the same dimension as the domain. But
if dim V = n then by Theorem 5.3 dim V ∗ = n also. Hence the range is all
of V ∗. QED.

Moral 5.7. We know that there are many inner products on any finite
dimensional vector space. But given a particular inner product on a real
finite dimensional vector space V , the preceding theorem provides a natural
way to identify V with V ∗ without making any ad hoc choices of basis. Here
is a consequence of this identification that we live with every day.
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Derivative versus gradient. Suppose that V is a finite dimensional
real vector space and f is a real valued function on V . For any point x in V
and any vector v ∈ V define

∂vf(x) =
df(x+ tv)

dt
|t=0

This is the derivative of f in the direction v. For example if we choose any
basis e1, ..., en of V we may write x =

∑n
j=1 xjej and then f is just a function

of n real variables, x1, ..., xn. The chain rule then gives

∂vf(x) =
n∑
j=1

vj(∂f/∂xj)(x)

where of course v =
∑n

j=1 vjej. This sum is clearly linear in v. In other
words the map v → ∂vf(x) is, for each x, a linear functional on V . One
often writes f ′(x) for this linear functional. That is, f ′(x)v = ∂vf(x). So
f ′(x) is in V ∗ for each x ∈ V . Therefore the derivative , f ′, is a function
from V into V ∗. If there is no natural way to identify V ∗ with V then this
map to V ∗ is the only object around that captures the notion of derivative
that you’re familiar with. But if V has a given inner product, (·, ·), then we
can identify the linear functional f ′(x) ( for each x) with an element of V .
This is the gradient of f . That is,

∇f(x) = f ′(x)

identified to an element of V by Theorem 5.6. Thus

f ′(x)v = ∂vf(x) = (∇f(x), v).
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3.2 Problems on Linear Functionals

Definition. A linear functional on a real or complex vector space V is a scalar
valued function f on V such that

i) f(αx) = αf(x) for all scalars α and all x ∈ V .
and ii) f(x+ y) = f(x) + f(y) for all x and y in V .

Which of the following expressions define linear functionals on the given
vector space?

1. V = R3, x = (x1, x2, x3). Explain why not if you think not.

a) f(x) = x1 + 5x2

b) f(x) = x1 + 4

c) f(x) = x2
1 + 5x3

d) f(x) = 7

e) f(x) = 0

f) f(x) = sinx2

g) f(x) = x1x2

h) f(x) = x · u where u is a fixed vector and x · u =
3∑
j=1

xjuj

2. V = C([0, 1]) (real valued continuous functions on [0, 1]).

a) F (ϕ) =

∫ 1

0

ϕ(t)dt for ϕ ∈ C([0, 1])

b) F (ϕ) = ϕ(3/5)

c) F (ϕ) = ϕ(0)

d) F (ϕ) = ϕ(0)2

e) F (ϕ) = ϕ(0)ϕ(1)

f) F (ϕ) =

∫ 1

0

ϕ(t) sin tdt

g) F (ϕ) =

∫ 1

0

ϕ(t)2dt
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h) F (ϕ) =

∫ 1

0

ϕ(t)2tdt

i) F (ϕ) =

∫ 1

0

(ϕ(t)/
√
t)dt

j) F (ϕ) =

∫ 1

0

(ϕ(t)/t)dt

k) F (ϕ) =

∫ 1

0

(sinϕ(t))dt

Explain why not if you think not.

3. Let V be the vector space of all finitely non–zero real sequences. [A
sequence x = (x1, x2, . . . ) is called finitely non–zero if ∃N 3 xk = 0 for all
k ≥ N .] If a = (a1, a2, a3, . . .) is an arbitrary sequence of real numbers let

fa(x) =
∞∑
j=1

ajxj for x in V. (3.3) 1

a) Show that the series converges for each x in V .

b) Show that fa(x) is a linear function of x.

c) Show that every linear functional on V has the form (1). That is, show
that if f is a linear functional on V then there exists a sequence, a, such that
f(x) = fa(x) ∀ x ∈ V .

d) Show that the sequence a, in part c) is unique.

4. Denote by P2 the space of real valued polynomials of degree less or equal
to 2. This is a real vector space of dimension three. (Right?) Define an inner
product on P2 by

(p, q) =

∫ 1

−1

p(t)q(t)dt.

You have already admitted that the function on P2 defined by L(p) =∫ 2

0
p(t) sin tdt is a linear functional. But we also know that every linear

functional is given uniquely by an element of the space P2 with the help of
the inner product. Thus there is a unique polynomial f of degree at most 2
such that

L(p) = (p, f) for all p ∈ P2.

Find f .
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3.3 Generalized functions

If you want to measure the electric field near some point in space you could
put a small charged piece of cork there and measure the force exerted by the
field on the cork. In this way you have converted the problem of making
an electrical measurement to that of making a mechanical measurement. Of
course the force on the cork is a (constant multiple of) an average of the forces
at each point of the cork. If E(x) is the field strength at x and ρ is the charge
distribution on the cork then the net force on the cork is

∫
R3E(x)ρ(x)d3x,

in appropriate units. In practice (and even in some theories) it is only these
averages that you can measure. For example if you really want to measure
the field at a point x by the preceding method you would have to place a
point charge at x. But classical theory shows that the total electric energy of
the field produced by a point charge is infinite. The notion of a point charge
is therefore at best an idealization. Of course if you know in advance that the
electric field is continuous then you can get better and better approximations
to the value of E(x) by using a sequence of smaller and smaller corks. In
the classical theory of electomagnetic fields the electric field tends to be
continuous and therefore it makes sense to talk about its value at a point.
The quantum theory of eletromagnetic fields, however, recognizes that there
are tremendous fluctuations in the field at very small scales and only the
averaged field has a meaning.

The need for talking only about averages shows up also in measurement of
temperature. A thermometer is clearly measuring the average temperature
over the volume of the little bulb at the bottom. If the temerature varies
from point to point and is a continuous function of position then you can, in
principle, measure the temperature at a point by using a sequence of smaller
and smaller bulbs. Recall however that a typical small bulb will contain
on the order of 1022 molecules. In accordance with statistical mechanics
the temperature at a point of a system has a really questionable meaning
because temperature is a measure of average kinetic energy of a large bunch of
molecules. So at an atomic size of scale temperature at a point is meaningless.

A pairing such as
∫

R3E(x)ρ(x)d3x, between an “extensive” quantity such
as charge (“extensive” means that in a larger volume you have more of the
stuff, such as charge, mass, etc.) and an “intensive” quantity, such as the
electric field ( in a larger volume you don’t have more field) occurs often in
physics. The integral is linear in ρ and defines a linear functional on the
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vector space of test charges. The integral is also linear in E for fixed ρ.
We say that the integral is a bilinear pairing between the extensive quantity
ρ and the intensive quantity E. Such bilinear pairings between two vector
spaces is common. Usually the elements in these dual vector spaces have a
physical interpretation, extensive for one and intensive for the other. (Julian
Schwinger, in his book “Sources and Fields” emphasizes the duality between
sources and fields.)

We are going to develop and use this notion of duality between very
smooth functions (test functions) and very “rough” functions (e.g. delta
functions.) It has proven to be a great simplifying machinery for under-
standing partial differential equations as well as Fourier transforms. We are
going to apply it to both.

The first step is to understand really smooth functions.

Test functions

Lemma 1. Let

f(x) =

{
e−1/x for x > 0

0 for x ≤ 0

Then f is infinitely differentiable on the entire real line.
Proof: First, recall that et grows faster than any polynomial as t→ +∞.

That is, limt→+∞ p(t)e−t = 0 for any polynomial. Second, you can see by
induction that for x > 0 the nth derivative dne−1/xdxn = pn(1/x)e

−1/x for
some polynomial pn. [ Convince yourself with the cases n = 0, 1, 2.] Third,
you can see easily that all of the derivatives of f exist at any point other
than x = 0, and is zero to the left of 0. The only question then is whats
happening at x = 0? Sadly, one must go back to the definition of derivative
to answer this. But its not so hard. If we know that the first n derivatives
exist at x = 0 and are zero there then the first and second comments above
show that the n+ 1st right hand derivative is

lim
h↓0

pn(1/h)e
−1/h − 0

h− 0
= 0

Of course the left hand derivative is clearly zero. So the two sided derivative
exists and is zero. This is the basis for an induction proof. Carry out the
case n = 0 yourself. QED.

Lemma 2 Let
φ(x) = f(x)f(1− x)
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where f is the function constructed in Lemma 1. Then φ is an infinitely
differentiable function on R with support contained in the interval [0, 1].

Proof:. φ is clearly infinitely differentiable by the repeated application
of the product rule for derivatives. To see that φ is zero outside the interval
[0, 1] draw a picture. QED

Notation. C∞
c is the standard notation for the set of infintiely differ-

entiable functions with support in a finite interval. One says that these
functions have compact support.

We have now constructed one (not identically zero) function in C∞
c . From

this function its easy to construct lots more. For example the function ψ(x) =
3φ(2x+7)+5φ(4x)3 is also in C∞

c . By scaling and translating the argument
of φ and taking powers one clearly gets lots of such functions. In FACT there
are so many such functions that they are dense in L2(R). [Remember the
concept of density form the chapter on Hilbert space?] One of the homework
problems sketches how to show that any continuous function with compact
support is a limit of functions in C∞

c .

Notation The space C∞
c arises so often that it customarily is given a

special notation:
D ≡ C∞

c (R).

The dual space of D is denoted, as usual, D∗.

Terminology An element in D∗ is called a distribution or a generalized
function (according to taste).

Examples 1. Suppose that f is a continuous function on R. Define

Lf (φ) =

∫ ∞

−∞
f(x)φ(x)dx for φ ∈ D. (3.4) 5.1

Then Lf is a linear functional on D. Notice that even if f increases near ∞
(e.g. f(x) = ex

2
) the integral makes sense because its really an integral over

some (and in fact any) interval that supports φ. So Lf ∈ D∗.
2. Let

Lδ(φ) = φ(0).

Then Lδ is also a linear functional on D. (Clear?) So Lδ ∈ D∗. But this
example is substantially different from the first one. There is no continuous
function f , or even discontinuous function f , such that Lδ =

∫∞
−∞ f(x)φ(x)dx.
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3. Its still OK if the function f in Example 1 is not continuous but has
only some mild singularities. For example if f(x) = 1/|x|1/2 in (

5.1
3.4) then

the integral still exists for any test function φ. All we need of f is that∫ b

a
|f(x)|dx < ∞ for any finite interval [a, b]. In particular the function

f(x) = 1/|x| won’t work in (
5.1
3.4). The integral doesn’t make sense for an

arbitrary test function φ. One says that f is locally integrable if
∫ b

a
|f(x)|dx <

∞ for any finite interval [a, b].
The lesson to be drawn from these examples is this: any continuous

function f on R produces a “generalized function” Lf , i.e. an element of
D∗ by means of the formula (

5.1
3.4). But not every element of D∗ comes from

a continuous function in this way (or even from a discontinuous function),
as we see in Example 2. That’s why we call the elements of D∗ generalized
functions. Neat terminology, huh?

4. There is an important instance that violates the wisdom of Example
3. Its based strongly on cancellation of singularity.

Lemma Let φ ∈ D. Then

P (
1

x
)(φ) ≡ lim

a↓0

∫
|x|>a

φ(x)

x
dx (3.5) 5.3

exists and is equal to∫
|x|>1

φ(x)

x
dx+

∫ 1

−1

φ(x)− φ(0)

x
dx (3.6) 5.4

Proof: If 0 < a < b then∫
|x|>a

φ(x)

x
dx =

∫
|x|>b

φ(x)

x
dx+

∫
a<|x|≤b

φ(x)− φ(0)

x
dx (3.7) 5.5

because
∫
a<|x|≤b

1
x
dx = 0. The integrand in the last term in (

5.5
3.7) is bounded

on R by the mean value theorem. So we can let a ↓ 0 and get a limit. This
also proves the validity of the representation (

5.4
3.6) of this limit. QED

The generalized function P ( 1
x
) is called the Principal Part of 1/x. It

arises in many contexts. We will see it coming up later in the Feynman
propagator.
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3.4 Derivatives of generalized functions

Definition Let T ∈ D∗. The derivative of T is the element T ′ of D∗ given
by

T ′(φ) = −T (φ′) for all φ ∈ D. (3.8) D1

What does this definition have to do with our well known notion of deriva-
tive of a function? First lets observe that at least T ′ is indeed a well defined
linear functional on D. The reason is that for any φ ∈ D the function φ′ is
again in D so the right side of (

D1
3.8) makes sense. The linearity of T ′ is clear.

Right? To understand why this definition is justified consider the example
T = Lf spelled out in (

5.1
3.4). Suppose that f is actually differentiable in the

classical sense. (i.e. in the sense that you grew up with.) Then

Lf ′(φ) =

∫ ∞

−∞
f ′(x)φ(x)dx

=

∫ b

a

f ′(x)φ(x)dx

where a and b are chosen so that φ = 0 off (a, b)

= f(x)φ(x)|ba −
∫ b

a

f(x)φ′(x)dx

= −
∫ b

a

f(x)φ′(x)dx

= −
∫ ∞

−∞
f(x)φ′(x)dx

= −Lf (φ′)

So
Lf ′(φ) = −Lf (φ′). (3.9) D3

Stare at (
D1
3.8) and (

D3
3.9). Do you see now why (

D1
3.8) is a justifiable definition

of derivative of a generalized function T? That’s right. It agrees with the
classical notion of derivative when T = Lf and f is itself differentiable!!!
But (

D1
3.8) has a well defined meaning even when its not of the form Lf for

some differentiable function f . Lets see what the definition (
D1
3.8) gives when

T = LH and H is the non-differentiable function given by

H(x) =

{
1, x ≥ 0

0, x < 0
(3.10)
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In this case we have, USING (
D1
3.8),

T ′(φ) = −T (φ′) (3.11)

= −LH(φ′) (3.12)

= −
∫ ∞

0

φ′(x)dx (3.13)

= φ(0) (3.14)

by the fundamental theorem of calculus. So we have

(LH)′ = Lδ. (3.15) D5

You could say (flippantly) that we have now differentiated a non-differentiable
function, H and found H ′ = δ. In truth the perfectly meaningful equation
(
D5
3.15) is often written as H ′ = δ. But what does this equation mean? It

means (
D5
3.15). For the next two weeks we will regard it as immoral to write

the equation H ′ = δ.
Example: (Lδ)

′(φ) = −φ′(0)

We now have a notion of derivative of a generalized function. Lets end
with one more definition.

Definition A sequence Tn of generalized functions converges to a gen-
eralized function T if the sequence of numbers Tn(φ) converges to T (φ) for
each φ ∈ D.
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3.5 Problems on derivatives and convergence of distri-
butions.

1. Define

L(φ) =

∫ ∞

−∞
|x|φ(x)dx for φ ∈ C∞

c (R).

Using the definition
T ′(φ) = −T (φ′),

compute the first four derivatives of L; that is, compute T ′, ..., T (4).
Hint #1. Use the definition of derivative of a distribution.
Hint #2. Use the definition four times to compute the four derivatives.

2. Suppose that f : R → R is continuous (but not necessarily differentiable.)
Let

u(x, t) = f(x− ct).

Show that u is a solution to the wave equation

∂2u/∂t2 = c2∂2u/∂x2

in the distribution sense (sometimes called the weak sense.)
Nota Bene: Since f is not necessarily differentiable you cannot use f ′ in

the classical sense.

3. Does
∑∞

n=1 δ(x− n) converge in the distribution sense?

4. Let pt(x) = (2πt)−1/2e−x
2/(2t). Find the folowing limits if they exist.

a. the pointwise limit as t ↓ 0.
b. the L2(R) limit.
c. the limit in D∗.
You may use the following FACT that will be proved later∫ ∞

−∞
pt(x)dx = 1 ∀t > 0.

5. Let φ be the function constructed in Lemma 2, except multiply it by a
positive constant such that ∫

R
φ(x)dx = 1
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Such a constant can be found because the original φ is nonnegative and has
a strictly positive integral. Then let

φn(x) = nφ(nx)

Our goal is to show that φn converges in some sense to a delta function.
a. Show that

∫
R φn(x)dx = 1 for all positive integers n.

b. Suppose that g is a continuous function on R. Show that

lim
n→∞

∫
R
φn(x)g(x)dx = g(0).

c. Use part b. and the definition of convergence of distributions to show
that

Lφn converges in the weak sense to Lδ.

6. Prove that, for all φ ∈ D,

lim
ε↓0

∫ ∞

−∞

φ(x)

x+ iε
dx = P (

1

x
)(φ)− iπφ(0) (3.16) 5.8

This is often written as

lim
ε↓0

1

x+ iε
= P (

1

x
)− iπδ weak sense (3.17) 5.9

Hint: Review the proof of the lemma at the end of Section 3.3.
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3.6 Distributions over Rn

The extension of the one dimensional notion of distribution to an n di-
mensional distribution is straightforward. Denote by D the vector space
of infinitely differentiable functions on Rn which are zero outside of a large
cube (that can depend on the function.) This space is sometimes denoted
C∞
c (Rn). There are plenty of such functions. For example if φ1, . . . , φn

are each in C∞
c (R) then the function ψ(x1, . . . , xn) = φ(x1) · · ·φ(xn) is in

C∞
c (Rn). (What cube could you use?) So is any finite linear combination of

these products. A distribution over Rn is defined as a linear functional on
D. Of course we can make up examples of such n-dimensional distributions
similar to the ones we already know in one dimension: Let

Lf (φ) =

∫
Rn

f(x)φ(x)dnx (3.18)

As long as |f | has a finite integral over every cube this expression makes
sense and defines a linear functional on D, just as in one dimension. We also
have the n-dimensional δ “function” defined by

Lδ(φ) = φ(0). (3.19)

The difference from one dimension shows up when we consider differentiation.
We now have partial derivatives. Here is the definition of partial derivative
(as if you couldn’t guess).

∂T

∂xk
(φ) = −T (∂φ/∂xk). (3.20)

When n = 3 every distribution has a very intuitive interpretation as an
arrangement of charges, dipoles, quadrupoles, etc. I’m going to explain this
interpretation in class in more detail. It gives physical meaning to every
element of D∗!!!
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3.7 Poisson’s Equation

We will write as usual r = |x| in R3.

Theorem 3.1

∆
1

r
= −4πδ. (3.21) P1

in the distribution sense. That is,

∆L1/r = −4πLδ

We will break the proof up into several small steps.

Lemma 3.2 At r 6= 0
∆(1/r) = 0

Proof. ∂(1/r)/∂x = −x/r3 and ∂2(1/r)/∂x2 = −1/r3 + 3x
2

r5
. So

∆(1/r) = −3/r3 + 3
x2 + y2 + z2

r5
= −3/r3 + 3/r3 = 0.

QED.
In view of this lemma you can see that we have only to deal now with

the singularity at r = 0. Our notion of weak derivative is just right for doing
this.

The trick is to avoid the singularity until after one does some clever
integration by parts (in the form of the divergence theorem). In case you
forgot your vector calculus identities a self contained review is at the end of
this section. I want to warn you that this is not the kind of proof that you
are likely to invent yourself. But the techniques are so frequently occurring
that there is some virtue in following it through at least once in one’s life.

Lemma 3.3 Let φ ∈ D. Then∫
R3

(1/r)∆φ(x)dx = lim
ε→0

∫
r≥ε

(1/r)∆φdx
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Proof: The difference between the left and the right sides before taking the
limit is at most (use spherical coordinates in the next step)

|
∫
r≤ε

(1/r)∆φd3x| ≤ max
x∈R3

|∆φ(x)|
∫
r≤ε

(1/r)d3x = max
x∈R3

|∆φ(x)|2πε2 → 0

QED.
Before really getting down to business lets apply the definitions.

∆T1/r(φ) =
3∑
j=1

(∂2/∂x2
j)T1/r(φ) (3.22)

= −
3∑
j=1

(∂/∂xj)T1/r(∂φ/∂xj) (3.23)

= T1/r(∆φ) (3.24)

=

∫
R3

(1/r)∆φ(x)d3x (3.25)

= lim
ε→0

∫
r≥ε

(1/r)∆φ(x)d3x. (3.26)

So what we really need to do is show that this limit is −4πφ(0). To this end
we are going to apply some standard integration by parts identities in the
“OK” region r ≥ ε.

Cε :=

∫
r≥ε

(1/r)∆φ(x)d3x (3.27)

=

∫
r≥ε

∇ ·
(1

r
∇φ− φ∇(

1

r
)
)
d3x by identity (

P8
3.39) (3.28)

=

∫
r=ε

(
1

r
∇φ · n− φ(∇1

r
) · n)dA by the divergence theorem (3.29)

where n is the unit normal pointing toward the origin. The other boundary
term in this integration by parts identity is zero because we can take it over
a sphere so large that φ is zero on and outside it.
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Now

|
∫
r=ε

(1/r)(∇φ · n)dA| = 1

ε
|
∫
r=ε

(∇φ · ndA| (3.30)

≤ 1

ε
(max |∇φ|)4πε2 (3.31)

→ 0 (3.32)

as ε ↓ 0. This gets rid of one of the terms in Cε in the limit. For the other
one just note that (∇1

r
) · n = −∂(1/r)/∂r = 1/r2. So

−
∫
r=ε

φ(∇1

r
) · n)dA = − 1

ε2

∫
r=ε

φ(x)dA (3.33)

= − 1

ε2

∫
r=ε

φ(0)dA− 1

ε2

∫
r=ε

(φ(x)− φ(0))dA (3.34)

= −4πφ(0)− 1

ε2

∫
r=ε

(φ(x)− φ(0))dA (3.35)

Only one more term to get rid of!

1

ε2
|
∫
r=ε

(φ(x)− φ(0))dA| ≤ max
|x|=ε

|φ(x)− φ(0)| · 4π → 0

because φ is continuous at x = 0. This proves (
P1
3.21).

Vector calculus identities.
If f is a real valued function and G is a vector field, both defined on some

region in R3 then
∇ · (fG) = (∇f) ·G+ f∇ ·G (3.36) P5

Application #1. Take f = 1/r and G = ∇φ. Then we get

∇ · (1
r
∇φ) = (∇1

r
) · ∇φ+

1

r
∆φ wherever r 6= 0. (3.37) P6

Application #2. Take f = φ and G = ∇1
r
. Then we get

∇ · (φ∇1

r
) = (∇φ) · (∇1

r
) + φ∆

1

r
wherever r 6= 0 (3.38) P7

But ∆1
r

= 0 wherever r 6= 0. So subtracting (
P7
3.38) from (

P6
3.37) we find

1

r
∆φ = ∇ · (1

r
∇φ− φ∇1

r
) wherever r 6= 0. (3.39) P8

This is the identity we need in the proof of (
P1
3.21).
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4 The Fourier Transform

The Fourier transform of a complex valued function on the line is

f̂(ξ) =

∫ ∞

−∞
eiξxf(x)dx (4.1) F1

Here ξ runs over R. The most useful aspect of this transform of functions is
that it interchanges differentiation and multiplication. Thus if you differen-
tiate under the integral sign you get

d

dξ
f̂(ξ) =

∫ ∞

−∞
eiξx{ixf(x)}dx. (4.2) F2

So

(Fourier transform of{ixf(x)})(ξ) =
d

dξ
f̂(ξ). (4.3)

And an integration by parts (never mind the boundary terms) clearly gives

−iξf̂(ξ) =

∫ ∞

−∞
eiξxf ′(x)dx. (4.4) F3

So
f̂ ′(ξ) = −iξf̂(ξ) (4.5)

We will see later that these formulas allow one to solve some partial differen-
tial equations. Moreover in quantum mechanics these two formulas amount
to the statement that the Fourier transform interchanges P and Q (momen-
tum and position operators.)

But the usefulness of these formulas depends crucially on the fact that
one can also transform back and recover f from f̂ . To this end there is an
inversion formula that does the job. Our goal is to establish the most useful
properties of the Fourier transform and in particular to derive the inversion
formula and show how to use it to solve PDEs.

To begin with we must understand how to give honest meaning to the
formula (

F1
4.1). Since the integral is over an infinite interval there is a conver-

gence question right away. Suppose that∫ ∞

−∞
|f(x)|dx <∞. (4.6) F4
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We will write f ∈ L1 if (
F4
4.6) holds. If f ∈ L1 then there is no problem with

the existence of the integral in (
F1
4.1) because lima→∞

∫ a

−a e
iξxf(x)dx exists.

[Proof: |
( ∫ a

−a−
∫ b

−b

)
eiξxf(x)dx| ≤

∫
a≤|x|≤b |f(x)|dx→ 0 as a ≤ b→∞. Use

the Cauchy convergence criterion now.]
Of course even if f ∈ L1 it can happen that f ′ is not in L1 and/or that

xf(x) is not in L1. This is a nuisance in dealing with the identities (
F2
4.2) and

(
F3
4.4). We are going to restrict our attention for a while to a class of functions

that will make these issues easy to deal with.
Definition. A function f on R is said to be rapidly decreasing if

|xnf(x)| ≤Mn, n = 0, 1, 2, ... (4.7) F5

for some real numbers Mn. In words: xnf(x) is bounded on R for each n.
Examples 1. e−x

2
is rapidly decreasing.

2. 1
x2+1

is not rapidly decreasing because (
F5
4.7) only holds for n = 0, 1, 2

but not for n = 3 or more.
3. If f is rapidly decreasing then so is x5f(x) because xnx5f(x) =

xn+5f(x) which is bounded in accordance with (
F5
4.7). Just replace n by n+5

in (
F5
4.7). Since any finite linear combination of rapidly decreasing functions

is also rapidly decreasing we see that p(x)f(x) is rapidly decreasing for any
polynomial p if f is rapidly decreasing.

4. So by examples 1. and 3. we see that p(x)e−x
2

is rapidly decreasing
for any polynomial p.

5. Any function in C∞
c (R) is rapidly decreasing.

6. Summary: The space of rapidly decreasing functions is a vector space
and is closed under multiplication by any polynomial. And besides, there are
lots of these functions.

Lemma Any rapidly decreasing function is in L1.
Proof: Apply (

F5
4.7) for n = 0 and n = 2 to conclude that

|(1 + x2)f(x)| ≤M

for some real number M . So∫ ∞

−∞
|f(x)|dx ≤M

∫ ∞

−∞

1

x2 + 1
dx <∞.

QED
Using only rapidly decreasing functions in (

F2
4.2) will allow us not to have

to worry about whether f and xf(x) are both in L1. Neat, huh?
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But to use (
F3
4.4) we still need to worry about whether f ′ is in L1. So

we are going to restrict our attention for a while, even further, to a class of
functions that makes both (

F2
4.2) and (

F3
4.4) easy to deal with.

Notation: S will denote the set of C∞ functions on R such that f and
each of its derivatives is rapidly decreasing.

Examples
7. e−x

2
is infinitely differentiable and each derivative is just a polynomial

times e−x
2
. We’ve already seen that these functions are rapidly decreasing.

So the function e−x
2

is in S.
8. 1

x2+1
is infinitely differentiable but is not rapidly decreasing. So this

function is not in S.
9. Now here is a real nice thing about this space S. If f ∈ S then any

polynomial, p, times any derivative of f is again in S. CHECK THIS against
the definitions! I know this may seem too good to believe. But we do know
that there are lots of functions in S. All of C∞

c is contained in S. And
besides there are more, as we saw in Example 7.

STATUS: If f ∈ S then f and all of its derivatives are in L1. So both
formulas (

F2
4.2) and (

F3
4.4) make sense. Moreover they are both correct because

the boundary terms that we ignored in deriving (
F3
4.4) are indeed zero, since

these functions go to zero so quickly at ∞. (Check this at your leisure!)
In truth, here is the reason that the space S is so great.
Invariance Theorem. If f ∈ S then f̂ ∈ S.
Proof: First notice that for any function f in L1 we have the bound

|f̂(ξ)| = |
∫ ∞

−∞
eiξxf(x)dx| (4.8)

≤
∫ ∞

−∞
|f(x)|dx (4.9)

= ‖f‖1. (4.10)

Since the right side doesn’t depend on ξ f̂ is bounded.
Now suppose that f ∈ S. Then so is f ′, f ′′, etc. So f ′, f ′′ etc. are all

in L1. By (
F3
4.4) it now follows that ξnf̂(ξ) is bounded for each n = 0, 1, 2....

So f̂ is rapidly decreasing. But df̂(ξ)/dξ is the Fourier transform of ixf(x)
which we have seen is also in S. So df̂(ξ)/dξ is also rapidly decreasing. And
so on. QED.
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Here is what the inversion formula will look like

f(y) =
1

2π

∫ ∞

−∞
e−iyξf̂(ξ)dξ. (4.11) F8

Since we already know that f̂ is in S we know that the right hand side of
(
F8
4.11) makes sense. Contrast this with the example that you worked out in

the homework: Take f(x) = 1 if |x| ≤ 1 and f = 0 otherwise. Then f ∈ L1

so f̂ makes sense. But f̂ itself decreases so slowly at ∞ that its not in L1. So
(
F8
4.11) doesn’t make sense. Aren’t you glad that we are focusing on functions

in S?
Notation:

ǧ(y) =
1

2π

∫ ∞

−∞
e−iyξg(ξ)dξ (4.12) F9

Inversion Theorem. For f ∈ S equation (
F8
4.11) holds.

In other words :
ˇ̂
f = f .

We are going to spend the next few pages proving this formula. (Not
because I fear that you might not trust me, but because the proof derives
some very useful identities along the way.)
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4.1 The Fourier Inversion formula on S(R).

To begin, here are some explicit computations of some important Fourier
transforms.

Gaussian identities
Let

pt(x) =
1√
2πt

e−x
2/2t (4.13) F10

Then we have the following three identities.∫ ∞

−∞
pt(x)dx = 1 (4.14) F11

p̂t(ξ) = e−tξ
2/2 (4.15) F12

ˇ
(e−

t
2
ξ2)(x) =

1√
2πt

e−x
2/2t = pt(x). (4.16) F13

Proof of (
F11
4.14) [Sneaky use of polar coordinates.]

{
∫ ∞

−∞
pt(x)dx}2 =

∫
R2

pt(x)pt(y)dxdy (4.17)

=
1

2πt

∫
R2

e−
x2+y2

2t dxdy (4.18)

=
1

2πt

∫ ∞

0

∫ 2π

0

e−r
2/2trdrdθ (4.19)

= 1 (4.20)

(Use the substitution s = r2/(2t) in the last step.)

Proof of (
F12
4.15)

To compute p̂t(ξ) we need first to multiply pt(x) by eixξ before integration.
The exponent is a quadratic function of x for which we can complete the
square thus:

−x
2

2t
+ ixξ = − 1

2t
(x− itξ)2 − tξ2/2

Hence

p̂t(ξ) = e−tξ
2/2 1√

2πt

∫ ∞

−∞
e−

1
2t

(x−itξ)2dx (4.21) F16
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The coefficient of e−tξ
2/2 looks “just like”

∫∞
−∞ pt(x)dx which is one. This

would prove (
F12
4.15). But not so fast. x has been translated by the imaginary

number itξ. You can’t just translate the argument to get rid of it. Here
is how to get rid of it. Let a = −tξ. and suppose a > 0 just so that I
can draw pictures verbally. Take a large positive number R and consider
the rectangular contour in the complex plane which starts at −R on the
real axis, moves along the real axis to R and then moves vertically up to
the point R + ia. From there move horizontally, west to −R + ia and then
south back to the point −R. Since e−z

2/(2t) is an entire function, the integral
of this function around this rectangular contour is zero. Otherwise put,∫ R

−R e
(x+ia)2/(2t) =

∫ R

−R e
−x2/(2t)dx plus a little contribution from the vertical

sides of the rectangle. On the right end the integral is at most a times
the maximum value of the integrand on that segment. But |e−(R+iy)2/(2t)| =
e(−R

2+y2)/(2t), which goes to zero quite quickly for 0 ≤ y ≤ a as R →∞. So
the integrals along the end segments go to zero as R → ∞. So it is indeed
true that the coefficient of e−tξ

2
in (

F16
4.21) equals

∫∞
−∞ pt(x)dx, which is one.

QED

Proof of (
F13
4.16) e−tξ

2/2 =
√

2π
t
p1/t(ξ) by (

F10
4.13). Since p1/t is even we have

(̌e−tξ
2/2) = (1/2π)

√
2π
t
(p̂1/t)(x) = 1√

2πt
e−x

2/2t by (
F12
4.15). QED

Definition 4.1 The convolution of two functions f and g on R is given by

(f ∗ g)(x) =

∫
R

f(x− y)g(y)dy (4.22) F21

lemF1 Lemma 4.2 Let g be a bounded continuous function on R. Then for each x

lim
t↓0

(pt ∗ g)(x) = g(x).

Proof: Since
∫∞
−∞ pt(x)dx = 1 we have

(pt ∗ g)(x)− g(x) = (g ∗ pt)(x)− g(x) (4.23)

=

∫
g(x− y)pt(y)dy − g(x) (4.24)

=

∫ ∞

−∞
(g(x− y)− g(x))pt(y)dy. (4.25)
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Given ε > 0, ∃ δ > 0 3 |g(x− y)− g(x)| < ε if |y| < δ.

∴ |pt ∗ g(x)− g(x)| ≤
∫ δ

−δ
|g(x− y)− g(x)|pt(y)dy (4.26)

+

∫
|y|>δ

|g(x− y)− g(x)|pt(y)dy (4.27)

≤ ε

∫ δ

−δ
pt(y)dy + 2|g|∞

∫
|y|>δ

pt(y)dy (4.28)

≤ ε+ 2|g|∞
∫
|y|>δ

pt(y)dy. (4.29)

∴ lim
t↓0
|(pt ∗ g)(x)− g(x)| ≤ ε+ 2|g|∞lim

t↓0

∫
|y|≥δ

pt(y)dy.

But∫
y≥δ

pt(y)dy =
2√
2πt

∫ ∞

δ

e−y
2/2tdy ≤ 2√

2πt

∫ ∞

δ

y

δ
e−y

2/2tdy (4.30)

=
2

δ
√

2πt
[−te−y2/2t]∞δ =

2

δ
√

2π

√
te−δ

2/2t → as t ↓ 0. (4.31)

Therefore
lim
t↓0
|(pt ∗ g)(x)− g(x)| ≤ ε ∀ ε > 0.

Hence
lim
t↓0
|(pt ∗ g)(x)− g(x)| = 0.

Q.E.D.

Lemma 4.3 If f and g are in S(R) then

(f̌ ∗ g)(x) =
1

(2π)n

∫
f(ξ)e−iξ·xĝ(ξ).
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Proof:

(f̌ ∗ g)(x) =

∫
R

f̌(x− y)g(y)dy (4.32)

=
1

(2π)n

∫
R

∫
R

f(ξ)e−iξ·(x−y)g(y)dξdy (4.33)

=
1

(2π)n

∫
R

∫
R

f(ξ)e−iξ·xeiξ·yg(y)dydξ (4.34)

=
1

(2π)n

∫
R

f(ξ)e−iξ·xĝ(ξ)dξ. (4.35)

Q.E.D.

Theorem 4.4 If g is in S(R) then

(ĝ)ˇ(x) = g(x).

Proof. In the preceding lemma put f(ξ) = e−tξ
2/2. Then, by (

F13
4.16), f̌(x) =

pt(x). Thus

(pt ∗ g)(x) =
1

2π

∫
R

e−tξ
2

e−iξ·xĝ(ξ)dξ.

Let t ↓ 0. Use Lemma
lemF1
4.2 on the left and Dom. Conv. theorem on the right

to get

g(x) =
1

2π

∫
R

e−iξ·xĝ(ξ)dξ.

The asymmetric way in which the factor 2π occurs in the inversion formula
is sometimes a confusing nuisance. It is useful to distribute this factor among
the forward and backward transforms. Define

(Fg)(ξ) = (2π)−1/2ĝ(ξ) (4.36)

The factor in front of ĝ has clearly no effect on the one-to-one or ontoness
property of the map g → ĝ. That is, F is a one-to-one map of S(R) onto
S(R). However the factor makes for a nice identity:

corFPl Corollary 4.5 (Plancherel formula for S) If f and g are in S(R) then

(Ff,Fg) = (f, g) (4.37)
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Explicitly, this says∫
R

(Ff)(ξ)(Fg)(ξ)dξ =

∫
R

f(x)g(x)dx (4.38)

Proof. Phrasing this identity directly in terms of f̂ and ĝ, it asserts that∫
R

f̂(ξ)ĝ(ξ)dξ = (2π)

∫
R

f(x)g(x)dx

But ĝ(ξ) =
∫
g(x)eix·ξdx =

∫
g(x)e−ix·ξdx. Hence∫

R

f̂(ξ)ĝ(ξ)dξ =

∫
R

∫
R

f̂(ξ)g(x)e−ix·ξdxdξ (4.39)

=

∫
R

( ∫
R

f̂(ξ)e−ix·ξg(x)dξ
)
dx (4.40)

=

∫
R

(2π)f(x)g(x)dx. (4.41)

Q.E.D.
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4.2 The Fourier transform over Rn

The definitions, key formulas, theorems and proofs for the Fourier transform
over Rn are nearly identical to those over R. In this section we are going to
summarize the results we’ve obtained so far and formulate them over Rn.

The Fourier transform of a complex valued function on Rn is

f̂(ξ) =

∫
Rn

eiξ·xf(x)dx (4.42) F51

Here ξ runs over Rn. Just as in one dimension, one must pay some attention
to the meaningfulness of this integral. But the ideas are similar.

As in one dimension, the Fourier transform over Rn interchanges multi-
plication and differentiation. The analog of (

F2
4.2) is

∂

∂ξj
f̂(ξ) =

∫
Rn

eiξ·x{ixjf(x)}dx. (4.43) F52

So

(Fourier transform of{ixjf(x)})(ξ) =
∂

∂ξj
f̂(ξ). (4.44)

An integration by parts (never mind the boundary terms) clearly gives the
analog of (

F3
4.4):

−iξj f̂(ξ) =

∫
Rn

eiξ·x(∂f/∂xj)(x)dx. (4.45) F53

So
∂̂f/∂xj(ξ) = −iξj f̂(ξ) (4.46)

We will see later that these formulas allow one to solve some partial differen-
tial equations. Moreover in quantum mechanics these two formulas amount
to the statement that the Fourier transform interchanges Pj and Qj (mo-
mentum and position operators.)

We say that a function f is in L1(Rn) if∫
Rn

|f(x)|dnx <∞ (4.47)

The formula (
F51
4.42) makes perfectly good sense if f ∈ L1(Rn). But in

the end we are going to give meaning to (
F51
4.42) for a much larger class of

functions and generalized functions, including e.g. delta functions and their
derivatives. To this end we need the n-dimensional analog of S.
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Definition 4.6 A function f on Rn is said to be rapidly decreasing if

|x|k|f(x)| ≤Mk, k = 0, 1, 2, ... (4.48) F55

for some real numbers Mk. In words: |x|kf(x) is bounded on Rn for each k.

In Exercise 4 you will have the opportunity to show that the condition
(
F55
4.48) is equivalent to the statement that for any polynomial p(x1, . . . , xn)

in n real variables, the product p(x)f(x) is bounded.

lemF20 Lemma 4.7 Any rapidly decreasing function on Rn is in L1(Rn).

Definition 4.8 S(Rn) is the set of functions f in C∞(Rn) such that f and
each of its partial derivatives are rapidly decreasing.

Theorem 4.9 a. If f is in S(Rn) then f̂ is also in S(Rn).
b. The map f → f̂ is a one-to-one linear map of S(Rn) onto S(Rn).
c. The inverse is given by the inversion formula

f(y) = (2π)−n
∫
Rn

e−iξ·yf̂(ξ)dnξ. (4.49) F60

Definition 4.10 The convolution of two functions f and g on Rn is given
by

(f ∗ g)(x) =

∫
Rn

f(x− y)g(y)dny (4.50) F61

The important identity in the next theorem is the basis for the application
of the Fourier transform to solution of partial differential equations.

Theorem 4.11
(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ) (4.51) F65

Proof. The proof consists of the following straight forward computation.
A reader who is concerned about the validity of any of these steps should
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simply assume that f and g are in S(Rn), although the identity is valid quite
a bit more generally.

f̂ ∗ g(ξ) =

∫
Rn

(f ∗ g)(x)eix·ξdx (4.52)

=

∫
Rn

∫
Rn

f(x− y)g(y)dyeix·ξdx (4.53)

=

∫
Rn

∫
Rn

(
f(x− y)ei(x−y)·ξ

)
dxg(y)eiy·ξdy (4.54)

=

∫
Rn

f̂(ξ)g(y)eiy·ξdy (4.55)

= f̂(ξ)ĝ(ξ) (4.56)

Theorem 4.12 (Plancherel formula) Define Fφ = (2π)−n/2φ̂. Then

‖Fφ‖L2(Rn) = ‖φ‖L2(Rn) (4.57) F70

This is the Plancherel formula. As a consequence F is a unitary operator on
L2(Rn)

This is a minor restatement of Corollary
corFPl
4.5 and extension to Rn.

Finally, here are the n-dimensional analogs of the important Gaussian
identities (

F11
4.14) - (

F13
4.16).

Gaussian identities over Rn.
Let

pt(x) =
1√

(2πt)n
e−|x|

2/2t x ∈ Rn. (4.58) F80

Then ∫
Rn

pt(x)dx = 1 (4.59) F81

p̂t(ξ) = e−t|ξ|
2/2 (4.60) F82

ˇ
(e−

t
2
|ξ|2)(x) =

1√
(2πt)n

e−|x|
2/2t = pt(x). (4.61) F83
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4.3 Tempered Distributions

Definition 4.13 A tempered distribution on Rn is a linear functional on
S(Rn).

Example 4.14 (n = 1) Suppose that f : R → C satisfies

|f(x)| ≤ const.(1 + |x|n)for some n ≥ 0 (4.62) F30

In this case we say that f has polynomial growth. E.g. x3 sin x has polynomial
growth. (Take n = 3 in (

F30
4.62). Of course n = 4 will also do.) If f has

polynomial growth then the integral

Lf (φ) ≡
∫

R
f(x)φ(x)dx (4.63) F31

exists when φ ∈ S because |f(x)φ(x)| ≤ const.(1+ |x|n)(1+ |x|n+2)−1, which
goes to zero at ∞ like x−2 and so is integrable. Clearly Lf is linear. Thus
any function of polynomial growth determines in this natural way a linear
functional on S. Remember that we did not need polynomial growth of f
when we made Lf into a linear functional on D. So we have a “smaller” dual
space now. But the delta distribution and its derivatives are in this smaller
dual space anyway because

Lδ(φ) ≡ φ(0)

is a meaningful linear functional on S. (And similarly for δ(k).)

Example 4.15 We can’t allow the function f(x) = e2x
2

in (
F31
4.63) because

the function φ(x) = e−x
2

is in S and so (
F31
4.63) wouldn’t make sense.

Definition 4.16 The Fourier transform of an element L ∈ S∗ is defined by

L̂(φ) = L(φ̂) for φ ∈ S. (4.64) F33

Now you can see the virtue of using S as our new test function space: the
right hand side of (

F33
4.64) makes sense precisely because φ̂ is back in S when

φ is in S. After all, L is only defined on S. Had we attempted to use D this
definition would have failed because φ̂ is never in D when φ ∈ D (if φ 6= 0.)
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Example 4.17 L̂δ = L1. (In the outside world this is usually written δ̂ = 1.

Proof. Let φ ∈ S. Then

L̂δ(φ) = Lδ(φ̂) by def. (
F33
4.64) (4.65)

= φ̂(0) by the def. of Lδ (4.66)

=

∫
R
φ(x)dx by the def. of Fourier trans. at 0 (4.67)

= L1(φ) by yet another definition (4.68)

One thing to take away from this proof is that every step is just the
application of some definition. There is no mysterious computation. Let this
be a lesson to all of us!

Example 4.18
L̂1 = 2πLδ (4.69) F40

After you have achieved a suitable state of sophistication you can write this
as

1̂ = 2πδ.

Or even as!!
1

2π

∫ ∞

−∞
eixydx = δ(y)

(if you don’t feel too uncomfortable with the seeming nonsense of the left
side. But you better get used to it. Thats how (

F40
4.69) is written in the

outside world.)

Proof. of (
F40
4.69):

L̂1(φ) = L1(φ̂) by def. (
F33
4.64) (4.70)

=

∫
R
φ̂(ξ)dξ by def.of L1 (4.71)

= 2πφ(0) by the Fourier inversion formula (4.72)

Notice that this time the last step uses something deep.
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Consistency of the two definitions of the Fourier transform. If f ∈ L1

then we already have a meaning for f̂ . So is

L̂f = Lf̂?

Yes. Here is a (definition chasing) proof.

L̂f (φ) = Lf (φ̂) (4.73)

=

∫
R
f(ξ)φ̂(ξ)dξ (4.74)

=

∫
R
f(ξ)

∫
R
eixξφ(x)dxdξ (4.75)

=

∫
R

( ∫
R
f(ξ)eixξdξ

)
φ(x)dx (4.76)

=

∫
R
f̂(x)φ(x)dx (4.77)

= Lf̂ (φ) (4.78)

QED

61



4.4 Problems on the Fourier Transform

1. Find the Fourier transforms of the following functions:

a) e−|x|

b) e−x
2/2

c) xe−x
2/2

d) x2e−x
2/2

e) f(x) =

{
1 if a ≤ x ≤ b

0 otherwise.

f)
1

1 + x2

2. For ϕ in S(R2) define

T (ϕ) =

∫ ∞

−∞
xϕ(x, 0)dx.

(Note that this is an integral over a line — not over R2.)

a) Show that T is in S ′(R2).

b) Find the Fourier transform, T̂ , of T explicitly (explicitly enough to do

part c) without finding ψ̂).

c) Evaluate T̂ (ψ) where

ψ(ξ, η) =
ξe−(ξ2+η2)

1 + ξ2

d) Let L = a
∂2

∂ξ2
+ b

∂2

∂ξ∂η
+ c

∂2

∂η2
. Find all values of the real parameters

a, b, c such that
LT̂ = 0.

3. Compute
a. δ̂′

b. δ̂′′

c. L̂x
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d. L̂x2

Hints: 1. Use the definitions. 2. Use the definitions. 3. Use the
definitions.

4. Show that a function f on Rn is rapidly decreasing if and only if, for every
polynomial p(x1, . . . , xn), the function p(x)f(x) is bounded.

5. Derive the identities (
F81
4.59) - (

F83
4.61) from the one-dimensional identities

(
F11
4.14) - (

F13
4.16).
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5 Applications of the Fourier Transform

5.1 The Heat Equation by Fourier transform.

The three fundamaental types of PDE, parabolic, elliptic and hyperbolic are
amenable to study by using the Fourier transform in slightly differing ways
for each. The prototype of these three kinds of PDEs are the heat equaiton,
Poisson equation and wave equation.

The heat equation for a function u = u(t, x) in n spatial dimensions is

∂u/∂t = (1/2)∆u t ≥ 0 (5.1) 9.1

with initial condition
u(0, x) = f(x). (5.2) 9.2

Here f is a given function on Rn. As you probably know very well, there
is strong physical motivation for seeking a solution to (

9.1
5.1) for t ≥ 0 only:

bodies cool off as time moves forward. If you move backward in time temper-
atures can increase in such a way as to produce singularities in the solution.
We will see on purely mathematical grounds why solving the equation (

9.1
5.1)

backwards in time can produce singularities.
Solution of (

9.1
5.1), (

9.2
5.2): Apply the Fourier transform to u in the spatial

variable only. We obtain a function û(t, ξ) satisfying

∂û(t, ξ)/∂t = −(1/2)|ξ|2û(ξ) (5.3) 9.3

which we would like to satisfy the intial condition

û(0, ξ) = f̂(ξ) (5.4) 9.4

Now for each ξ ∈ Rn the equation (
9.3
5.3) an ORDINARY differential equation,

whose solution we know from elementary calculus. It is

û(t, ξ) = e−(t/2)|ξ|2 f̂(ξ). (5.5) 9.5

In order to find u(t, x) itself we still have to do a reverse Fourier transform
on (

9.4
5.4). But Hey! We already know of a function whose Fourier transform

is the first factor on the right in (
9.4
5.4). It is the function

pt(x) = (2πt)−n/2e−|x|
2/(2t) (5.6) 9.6
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whose Fourier transform we already computed. See (
F10
4.13) and thereafter.

(Use the n-dimensional version of that function.)
We also know that convolution goes over to multiplication under Fourier

transformation. Hence

(pt ∗ f)(̂ξ) = p̂tf̂(ξ) (5.7)

= e−(t/2)|ξ|2 f̂(ξ). (5.8)

By the uniqueness property of the Fourier transform we therefore find

u(t, x) = (pt ∗ f)(x) (5.9)

=
1√

(2πt)n

∫
Rn

e−|x−y|
2/2tf(y)dny (5.10)

5.2 Poissson’s equation by Fourier transform

We wish now to apply the preceding method to the equation

∆u = −4πρ. (5.11) 9.10

Although the method works in n dimensions (with n ≥ 2), we will carry
this out only in dimension n = 3, where we can compare with our previous
solution.

Apply the Fourier transform to (
9.10
5.11) in ALL of the variables. (Of course

we only have spatial variables this time.) We find

−|ξ|2û(ξ) = −4πρ̂(ξ) (5.12) 9.11

This time the partial differential equation has been reduced to an algebraic
equation: there are no derivatives left at all. So you think that the solution
is

û(ξ) = −4π(1/|ξ|2)ρ̂(ξ)? (5.13) 9.12

Well, if that were right then we again have a solution for the Fourier transform
in the form of a product. Of course this will give u itself as a convolution.
In fact it is true that

(̂
1

r
)(ξ) = −4π/|ξ|2
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And this would give

u =
1

r
∗ ρ, (5.14) 9.14

which we already know from our previous work is actually correct. We saw
back in those days that ρ could be e.g any charge distribution in D∗ with
compact support. Such a distribution ρ is clearly in S∗ also and the compu-
tations (

9.11
5.12)-(

9.14
5.14) are actually correct.

But we are losing some solutions in the passage from (
9.11
5.12) to (

9.12
5.13)! For

example we have the identity

|ξ|2δ(ξ) = 0. (5.15) 9.15

This means that we could add 5δ(ξ) onto the right side of (
9.12
5.13) and get

another solution. Back in x space this just means that we can add a constant
onto any solution u and get another solution. In fact if v as any harmonic
function on R3 (i.e. ∆v = 0) we could add v onto any solution of (

9.10
5.11)

and get another solution. For example 3x + 2y + 9z is harmonic. So is
x2 +y2−2z2. There are, in fact, lots of harmonic polynomials on R3. Among
all the solutions to (

9.10
5.11) the solutions (

9.14
5.14) are the only ones that go to

zero as |x| → ∞. The solution (
9.14
5.14) is called the potential of ρ. It is true

that all the solutions of (
9.11
5.12) differ from (

9.12
5.13) only in such a way. Here is

a problem that illuminates this.

Problem:(Poisson by Fourier)
Suppose that p(x, y, z) is a harmonic polynomial on R3. That is, ∆p = 0.

Write ∂j = ∂/∂ξj and let L be the distribution

L = p(−i∂1,−i∂2,−i∂3)δ.

Show that
|ξ|2L = 0.

Recall that this means L(|ξ|2φ(ξ)) = 0 for all φ ∈ S(R3).
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5.3 Advanced, Retarded and Feynman Propagators for
the forced harmonic oscillator

Let ω be a strictly positive constant. The harmonic oscillator equation with
frequency ω (actually frequency = ω/2π) is

d2u(t)

dt2
+ ω2u(t) = 0. (5.16) 10.1

the general solution to (10.1) is

u(t) = Aeiωt +Be−iωt. (5.17) 10.2

where A and B are complex constants. Of course one can choose A and B so
that the solution is real and is expressible as a linear combination of sinωt
and cosωt. But we are going to stick to the complex form (

10.2
5.17) because it

will be more revealing for our purposes.
The forced harmonic oscillator equation is

d2u(t)

dt2
+ ω2u(t) = f(t). (5.18) 10.3

It will be adequate for our purposes just to assume that f ∈ C∞
c (R)

and then not have to worry about any technical details. We can think of a
weight hanging from a spring which is attached to the ceiling. u(t) is the
displacement of the weight from its neutral position. For a few seconds we
push and pull on the weight (up and down) in accordance with the force f(t)
and then let go altogether (at the upper bound of the support set of f .) What
happens to the weight during and after the disturbance (thats us) acts via f?
Of course that depends on the initial state of the weight (at time t = 0, say).
Was the weight in its neutral position ( u = 0) or was it elsewhere? Was it
moving or stationary? If we specify the intial position u(0) and the initial
velocity u′(0) then we must solve the Initial Value Problem for the equation
(
10.3
5.18) with the specified f and specified initial data. Our goal however is to

address a different problem. We are going to study the equation (
10.3
5.18) from

the point of view of the Boundary Value Problem, somewhat in the spirit of
the section on Green functions. The novelty of the present section lies in the
fact that we will be interested in boundary conditions at ±∞. The function
f is sometimes called the source generating the motion u. For example in
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the context of Maxwell’s equations the sources for the electric and magnetic
fields are charges and currents. As in (

10.3
5.18) they make the homogeneous

Maxwell equations inhomogeneous.
We saw in the section on Green functions that on an interval [a, b] one

can choose, at a, Dirichlet or Neumann conditions or a linear combination
of them. Similarly at b. In this sense we have four degrees of freedom in
the nature of our choice of boundary conditions. (But you can only impose
two of them on a solution.) Here are three different Green functions for the
equation (

10.3
5.18). We will discuss their physical interpretations afterward. Let

Gr(t) =

{
sin tω
ω

t > 0

0 t ≤ 0
(5.19) 10.5

Ga(t) =

{
0 t ≥ 0

− sin tω
ω

t < 0
(5.20) 10.6

GF (t) =
1

2iω

{
eitω t ≥ 0

e−itω t < 0
(5.21)

Problem 1. Suppose that f ∈ C∞
c (R). Let

u = G ∗ f

with G = Ga or Gr or GF .
a. Show that in each case u is a solution to (

10.3
5.18). Hint. Imitate the

proof of Theorem
thmO3
2.7. Note that each of these three functions is continuous

and has a jump of one in its first derivative at t = 0.
b. Show that the solution Gr ∗ f is zero in the “distant” past, i.e. for

sufficiently large negative time, depending on f .
c. Show that Ga ∗ f is zero in the “distant” future.

Terminology. The Green function Gr is called the retarded Green func-
tion, and also sometimes called the retarded propagator. It propagates the
disturbance f into the future and depends on the the disturbance at some
earlier time. The etymology of the word “retarded” can be understood in the
context of electromagnetic theory, where the potential,at x t, of a changing
charge distribution depends not on the charge distribution at time t but at
an earlier time. The field produced by the charge distribution travels only
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with the speed of light, not instantly. The resulting potential is called the
retarded potential.

Similary the propagator Ga is called the advanced propagator. As you
saw in part c. of Problem 1, ua(t) can be non-zero before the disturbance
f even begins!!! (Doesn’t sound very “causal”, does it?) One says that Ga

propagates the disturbance into the past.
The third propagator, GF , is particularly important in understanding the

behavior of electrons and positrons in combination. GF is called the Feyn-
man propagator (for the single frequency ω.) It propagates the disturbance
f into the future as a positive frequency wave and into the past as a neg-
ative frequency wave. When this discussion is boosted up to three space
dimensions (from the present zero space dimensions) Feynman’s propagator
has the interpretation of propagating electron wave functions forward in time
as positive energy wave functions and propagating positron wave functions
backward in time as negative energy wave functions. Some authors say, for
short, that positrons are negative energy electrons moving backward in time.

The Green functions above have been constructed directly in terms of
the homogeneous solutions in accordance with the method in the section on
Green functions. Here is how the Fourier transform method can be applied.
In some contexts its the more useful way to go.

Take the Fourier transform of (
10.1
5.16) in the t variable (which is the only

variable around, this time.) We will use s for the variable conjugate to t.
That is, we define û(s) =

∫∞
−∞ eistu(t)dt. We find

(−s2 + ω2)û(s) = f̂(s). (5.22) 10.11

For the homogeneous equation we need to put f = 0. The solutions to (
10.11
5.22)

then include the δ functions at the two roots of ω2 − s2. Thus

û(s) = Aδ(s− ω) +Bδ(s+ ω) (5.23) 10.12

gives solutions to the homogeneous equation ( on the Fourier transform side.)
It is a FACT that these are the only solutions to (

10.11
5.22) when f = 0.

Problem 2. Show that the Fourier transform of the solutions (
10.2
5.17) are

given by (
10.12
5.23) (up to a constant.) Thus we have recovered the solutions to

the homogeneous equation by the method of Fourier transforms.

Next we address the inhomogeneous equation. Note first the identity

1

s2 − ω2
=

1

2ω

( 1

s− ω
− 1

s+ ω

)
(5.24) 10.13
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Dividing (
10.11
5.22) by the coefficient of û(s) we find

û(s) = − 1

2ω

( f̂(s)

s− ω
− f̂(s)

s+ ω

)
(5.25) 10.14

TROUBLE: We already know that 1
s±ω has a non-integrable singularity and

therefore so does the right hand side of (
10.14
5.25). As it stands the right hand

side therefore has no meaning. But we saw earlier that the function 1/s
has an interpretation as a distribution called the Principle Part of 1/s. It is
defined as

P (
1

s
) < φ >= lim

c→0

∫
|s|>c

φ(s)

s
(5.26) 10.15

Lemma 2. Let

θ(t) = (1/2)sgn(t) (5.27) 10.16

Then

θ̂(s) = iP
1

s
(5.28) 10.17

Proof:

θ̂(φ) = θ(φ̂) (5.29)

= lim
a→∞

∫ a

−a
θ(t)φ̂(t)dt (5.30)

= lim
a→∞

∫ a

−a
(

∫ ∞

−∞
θ(t)eitxφ(x)dx)dt (5.31)

= lim
a→∞

∫ ∞

−∞
(

∫ a

−a
θ(t)eitxdt)φ(x)dx (5.32)

= lim
a→∞

∫ ∞

−∞
(
cos ax− 1

ix
)φ(x)dx (5.33)

= lim
a→∞

∫
|x|>1

(
cos ax− 1

ix
)φ(x)dx (5.34)

+ lim
a→∞

∫
|x|≤1

(
cos ax− 1

ix
)(φ(x)− φ(0))dx (5.35)

because ( cos ax−1
ix

) is an odd function. The next to the last line converges to∫
|x|>1

(−1)φ(x)
ix
dx by the Riemann-Lebesgue Lemma. The very last integral
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may be rewritten
∫
|x|≤1

(cos ax − 1)φ(x)−φ(0)
ix

dx. So this integral converges to

−
∫ 1

−1
φ(x)−φ(0)

ix
dx by the Riemann-Lebesgue Lemma also. Q.E.D.

Problem 3. Using Lemma 2 show that

(θ(t)eitω)(̂s) = iP
1

s+ ω
(5.36) 10.17

for any real ω.

Problem 4 Let
F±(t) = θ(t)e±itω for ω > 0 (5.37) 10.18

In view of (
10.14
5.25) and (

10.17
5.36) we should expect that all the solutions to

d2u(t)

dt2
+ ω2u(t) = δ(t). (5.38) 10.19

should be expressible as a linear combination of the functions F± and the
solutions to the homogeneous equation (

10.1
5.16). For example one expects

Gr(t) = AF+(t) +BF−(t) + Ceiωt +De−iωt (5.39)

for some constants A,B,C,D.
Find explicitly this representation of the three Green functionsGr, Ga and

GF in terms of the functions F± and the solutions, (
10.2
5.17), of the homogeneous

equation.
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5.4 The wave equation by Fourier transform

The physically appropriate problem is the Cauchy problem. This is the initial
value problem.

∂2u(t, x)

∂t2
= ∆u(t, x) (5.40) 9.30

u(0, x) = f(x) (5.41)

∂u(0, x)/∂t = g(x) (5.42) 9.31

As in the heat equation we will take the Fourier transform in the space
variables only. We find

∂2û(t, ξ)

∂t2
= −|ξ|2û(t, ξ) (5.43) 9.32

Just as in the case of the heat equation we have now an ordinary differential
equation. But this time its second order in t. The general solution to (

9.32
5.43)

for each ξ is
û(t, ξ) = A(ξ) cos t|ξ|+B(ξ) sin t|ξ| (5.44) 9.33

Upon Fourier transforming the initial conditions (
9.31
5.42) we see that we must

have A(ξ) = f̂(ξ) and |ξ|B(ξ) = ĝ(ξ). Hence the Fourier transform of u is
given by

û(t, ξ) = f̂(ξ) cos t|ξ|+ ĝ(ξ)
sin t|ξ|
|ξ|

. (5.45) 9.34

That was the easy part. Now we have to Fourier transform back to find u
itself. Notice first that cos t|ξ| is exactly the t derivative of (sin t|ξ|)/|ξ|. It
will suffice then to find a distribution νt on R3 whose Fourier transform, for
each t, is (sin t|ξ|)/|ξ| . The solution to (

9.30
5.40), (

9.31
5.42) is then clearly

u(t, x) = (νt ∗ g)(x) + (∂/∂t)(νt ∗ f)(x). (5.46) 9.35

Lemma 9.5 Let σt be surface area element on the sphere |x| = |t| in R3.
Then ∫

R3

eix·ξdσt(x) = 4πt
sin t|ξ|
|ξ|

(5.47) 9.36

Proof. The integral is just an integral over a sphere of radius r = |t|. Use
spherical polar coordinates φ, θ. We can make use of the rotation invariance
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of the integral by choosing the positive z axis in the direction of ξ. Let
a = |ξ|. Then x · ξ = ra cos θ. So the integral is

r2

∫ 2π

0

∫ π

0

eira cos θ sin θdθdφ = 4πr
sin ra

a

(which you get by substituting s = cos θ.) This proves (
9.36
5.47) once one

observes that even if t < 0 (
9.36
5.47) is correct because sin is odd. QED

Now define a distribution νt on R3 by the formula

νt(φ) =
1

4π|t|

∫
|x|=|t|

φ(x)dσt(x) for φ ∈ S(R3) (5.48) 9.38

for t 6= 0 and define νt to be zero for t = 0.

5.4.1 Problems

Problem 1. Prove that

ν̂t(ξ) =
sin t|ξ|
|ξ|

for all t (5.49) 9.39

Hints: 1. Use the definition of Fourier transform of a distribution.
2. Use the definition of νt.
3. Use Lemma 9.5

Problem 2 Explain why the solution (
9.35
5.46), in combination with the explicit

form (
9.38
5.48) of νt, says that light travels with exactly speed one (in our units).

Finally, lets consider the inhomogeneous wave equation

∂2u(t, x)/∂t2 −∆u(t, x) = ρ(t, x). (5.50) 9.40

Assume, for ease of mind, that ρ is in C∞
c (R4). If we first Fourier transform

in the spatial variables only we find

∂2û(t, ξ)/∂t2 + |ξ|2û(t, ξ) = ρ̂(t, ξ) (5.51) 9.41

Notice that for each ξ this equation looks just like the harmonic oscillator
equation (

10.1
5.16) with ω2 = |ξ|2. !!! We can, and will, take over what we
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learned from the forced harmonic oscillator. It will be sufficiently illuminat-
ing to focus on just one of the three propagators that we studied for the
harmonic oscillator.

Put ω = |ξ| in (
10.17
5.36) and do the usual reverse Fourier transform to find.

û(t, ξ) = (θ(t)
eit|ξ|

2|ξ|
− θ(t)

e−it|ξ|

2|ξ|
) ∗ ρ̂(t, ξ)

For each t and t′ we see that we have the usual product of Fourier transforms
on the right (in the spatial variables). Moreover we have the formula (

9.39
5.49)

at our disposal. Thus we find

u(t, x) =

∫ ∞

−∞
(θ(t− t′)(νt−t′ ∗ ρ(t′, ·))(x)dt′ (5.52) 9.50

Not only does the integral represent a convolution but there is also a convolu-
tion right in the middle of the integral. All in all this represents a convolution
over R4. We may write this as

u = G ∗ ρ (5.53) 9.51

where
G = θ(t)νt (5.54) 9.52

is a distribution on R3 for each t and all together is a distribution on R4.
This is one of the propagators for the inhomogeneous wave equation (9.40).

One might wish to write (
9.52
5.54) more suggestively to emphasize its char-

acter as a distribution over R4 as G(t, x) = θ(t)νt(x). But one should not
lose sight of the fact that the second factor is not actually a function.

Remark to ponder. For the wave equation, as for the forced harmonic
oscilator, there are “essentially” three propagators for the inhomogeneous
equation (

9.40
5.50). We arrived at one of them by the above procedure. Its

one half the advanced plus retarded. Where does the Feynman propagator
come from? Hint: Consider the identity limε↓0

1
x+iε

= P (1/x) + πiδ which
you proved long ago in (

5.9
3.17).
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6 Laplace Transform

Definition. The Laplace transform of a function f : [0,∞) → C is the
function Lf defined by

Lf (s) =

∫ ∞

0

f(t)e−stdt. (6.1) L1

The domain of Lf is the set D(Lf ) consisting of those s ∈ R for which∫ ∞

0

|f(t)e−st|dt <∞.

Examples. 1. f(t) = et
2
, D(Lf ) = φ

2. If f ∈ L1(0,∞) then D(Lf ) ⊃ [0,∞). E.g., if f(t) = 1/(1 + t2) then
D(Lf ) = [0,∞).

3. f(t) = e3t. Then Lf (s) =

∫ ∞

0

e(3−s)tdt < ∞ if s > 3. So D(Lf ) =

(3,∞).

4. f(t) = e−t
2
. Then D(Lf ) = (−∞,∞). Note. If s0 ∈ D(Lf ) then

s ∈ D(Lf ) for any s > s0 because

f(t)e−st = f(t)e−s0t︸ ︷︷ ︸
∈L1(0,∞)

e−(s−s0)t︸ ︷︷ ︸
bdd

Consequently D(Lf ) is always an interval. As we see from the above
examples it may be the empty set or of the form [s0,∞), or (s0,∞), or
(−∞,∞).

Remark. If s0 ∈ D(Lf ) then Lf has an analytic extension to the half
space Re z > s0.

Proof: Put z = s+ iτ with s > s0. Then

|e−ztf(t)| = e−st|f(t)| ∈ L1(0,∞).

Hence the function

L̃(z) =

∫ ∞

0

f(t)e−ztdt (6.2) L2

exists for Re z > s0.
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By differentiating under the integral sign (easily justified) we see that

L̃(z) is analytic with

dL̃(z)/dz =

∫ ∞

0

−tf(t)e−ztdt.

Example. f(t) = e3t, D(Lf ) = (3,∞)

L̃(z) =

∫ ∞

0

e(3−z)tdt =
1

z − 3

which is analytic in Re(z) > 3. But note that L̃ has an analytic extension to
the entire complex plane with the exception of a pole at z = 3. This is typical
of Laplace transforms that arise in practice. They often have meromorphic
extensions to the entire plane. But the integral representation may be only
valid for Re z > s0.

6.1 The Inversion Formula

Suppose s0 ∈ D(Lf ) and s1 > s0. Let

g(τ) = L̃(s1 + iτ) (6.3)

=

∫ ∞

0

f(t)e−(s1+iτ)tdt (6.4)

=

∫ ∞

0

(f(t)e−s1t)︸ ︷︷ ︸
∈L1(0,∞)

e−iτtdt. (6.5)

Put

h(t) =

{
0 −∞ < t < 0

f(t)e−s1t 0 ≤ t <∞.

Then

g(τ) =

∫ ∞

−∞
h(t)e−iτtdt = Fourier transform of h.

Hence

h(t) =
1

2π

∫ ∞

−∞
g(τ)eiτtdτ.
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This integral may converge pointwise (in t) or in the L2 sense of convergence,
depending on the quality of g. But we ignore these questions.

Thus for 0 ≤ t <∞

f(t)e−s1t =
1

2π

∫ ∞

−∞
g(τ)eiτtdτ

by the Fourier inversion formula. So

f(t) =
es1t

2π

∫ ∞

−∞
L̃(s1 + iτ)eiτtdτ for t ≥ 0. (6.6) L3

Corollary 6.1 (Uniqueness Theorem) The Laplace transform Lf (s) of a
function f on [0,∞) determines f uniquely (up to values on a set of measure
zero) if D(Lf ) is not empty.

6.2 Application of Uniqueness

Problem. Find the function f(t) whose Laplace Transform is

L(z) =
4

z − 5
+

1

z − 7
+ 8

z

z2 + 9
.

Solution: f(t) = 4e5t + e7t + 8 cos 3t.

Reason.

z/(z2 + 9) = +
1

2

[ 1

z − 3i
+

1

z + 3i

]
.

Note. In this problem L(z) had simple poles. Higher order poles can be
dealt with using

dL̃(z)

dz
=

∫ ∞

0

−te−ztf(t)dt.

But note. L̃ may have no singularities in the finite plane even though f is
not the zero function.

Example. Let f be in L1(R) with support in [0, a]. Then

L̃(z) =

∫ ∞

0

f(t)e−ztdt =

∫ a

0

f(t)e−ztdt
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exists for all z ∈ C and is entire.
Nevertheless the case where L̃ has only poles and goes to zero at ∞ is

important. For this situation it is useful to rewrite the inversion formula
thus:

f(t) =
1

2π

∫ ∞

−∞
L̃(s1 + iτ)e(s1+iτ)tdτ.

Putting z = s1 + iτ , dz = idτ we get

f(t) =
1

2πi

∫ s1+i∞

s1−i∞
L̃(z)eztdz.

Sometimes the straight line integration contour can be deformed to surround
the poles of L̃. See the homework problem.
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6.3 Problems on the Laplace Transform

1. We have seen that if

L̃(z) ≈
∫ ∞

0

f(t)e−ztdt

exists in the open half space Re z > s0 then for any real number s1 > s0 f
may be expressed by

f(z) =
es1t

2π

∫ ∞

−∞
L̃(s1 + iτ)eiτdτ (6.7) L10

with z = s+ iτ . This may clearly be rewritten

f(t) =
1

2πi

∫
C

L̃(z)eztdz (6.8) L11

where C is the straight line contour from s1 − i∞ to s1 + i∞.
For some functions L̃(z) it may be possible to deform the contour to C1:

so as to include all the singular points of L̃ inside. If these singular points
are isolated poles then one could find f(z) by the method of residues.

Justify this procedure for the function

L̃(z) =
4

(5− z)3
+

2

6− z
+ π

z2 − 2z + 9

(z2 + 9)2

and use it to find f(t) for all t ≥ 0.
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7 Asymptotic Expansions

Reference: C.M. Bender and A.S. Orszag, Advanced Mathematical Methods
for Scientists and Engineers, Chapter 6. [QA 371 B45]

7.1 Introduction

Definition If f and g are two real (or complex) valued functions on a set S
then one writes

f = O(g) on S

if there is a real constant C such that

|f(x)| ≤ C|g(x)| for all x ∈ S.

Example. x(1 + x2)1/2 = O(x2) on [1,∞) but not on [0,∞)
Definition If f and g are two functions on an interval (a,∞) then one writes

f = O(g) as x→∞

if f = O(g) on [M,∞) for some M .
Example x(1 + x2)1/2 = O(x2) as x→∞.
Definition f(x) = o(g(x)) as x→∞ means

lim
x→∞

f(x)/g(x) = 0.

Examples. (i) If f(x) = 1/(x2 + 1)and g(x) = 1/x then f(x) = o(g(x)) as
x→∞.
(ii) e2x = o(e3x) as x→∞.
More Notation f(x) = φ(x)+o(ψ(x)) as x→∞ means that f(x)−φ(x) =
o(ψ(x)) as x→∞.
Example.

1

x2 + 1
=

1

x2
+ o(1/x2) as x→∞.
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We are going to study the four basic methods for determining the
Asymptotic behavior of an integral.

Four Methods
1. Integration by parts [page 45 of NB]
2. Laplace’s method [p.47–53 of NB]
3. Stationary phase [p.89–91 of NB]
4. Steepest descent [p.92–100 of NB]

7.2 The Method of Integration by Parts.

PROBLEM: Let

f(x) =

∫ x

1

et/tdt, x > 1.

Find the asymptotic behavior of f(x) as x→∞.
SOLUTION: Integrate by parts to find

f(x) =

∫ x

1

(1/t)det (7.1)

=
et

t
|x1 +

∫ x

1

et

t2
dt (7.2)

=
ex

x
− e+

∫ x

1

et

t2
dt (7.3)

Now it happens that the last term (the integral) is rather small compared
to the first term for large x. This needs to be proved. But once it is proved
we can see that f(x) “behaves” like ex/x for large x, the precise meaning of
which can be stated in terms of the preceeding notation in the form

f(x) =
ex

x
+ o(

ex

x
) as x→∞.

We will do better than this. But first we need the following tricky lemma.

Lemma 7.1 For any integer n ≥ 1 we have∫ x

1

et

tn
dt = O(

ex

xn
) as x→∞.
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Proof: ∫ x

1

et

tn
dt =

∫ x/2

1

et

tn
dt+

∫ x

x/2

et

tn
dt (7.4)

≤
∫ x/2

1

etdt+

∫ x

x/2

et

(x/2)n
dt (7.5)

= ex/2 − e+ (2/x)n(ex − ex/2), (7.6)

which proves the lemma.

Corollary 7.2 ∫ x

1

et

t(n+1)
dt = o(

ex

xn
) as x→∞.

One can go a step further now in determining the asymptotic behavior of
f . Integrating by parts again

f(x) =
et

t

∣∣∣x +
et

t2

∣∣∣x
1

+ 2

∫ x

1

et

t3
dt = ex

(1

x
+

1

x2

)
+O

(ex
x3

)
as before.

Clearly we may continue this and get

f(x) = ex
(1

x
+

1

x2
+

2

x3
+

6

x4
+ · · ·+ (n− 1)!

xn
+ o

( 1

xn

))
.

This motivates the following definition.
Definition. Let ϕ1, ϕ2, ϕ3, . . . be a sequence of functions on [a,∞) such

that ϕn+1(x) = o(ϕn(x)). If f is a function on [a,∞) one says that the series
∞∑
j=1

ajϕj(x) (aj are constants) is an asymptotic expansion of f if for each

n = 1, 2, 3, . . .

f(x) =
n∑
j=1

ajϕj(x) + o(ϕn(x)) x→∞.

Thus the infinite series
∞∑
j=1

ajϕj(x) need not converge for any x. In the

preceding example the series
∞∑
n=1

(n− 1)!

xn
is easily seen (by the ratio test) to

converge for no x.
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7.3 Laplaces Method.

7.3.1 Watson’s Lemma

Theorem 7.3 (Watson’s Lemma) Assume

A.

∫ ∞

0

|f(t)|e−ctdt <∞ for some c > 0.

B. For some α > −1 and β > 0, f has the asymptotic expansion

f(t) = tα
∞∑
k=0

akt
kβ as t ↓ 0. (7.7) As1

Let

I(x) =

∫ ∞

0

f(t)e−xtdt x > c. (7.8) As2

Then I(x) has the asymptotic expansion

I(x) =
∞∑
k=0

akΓ(α+ kβ + 1)

xα+kβ+1
x→∞. (7.9) As3

where

Γ(x) =

∫ ∞

0

ux−1e−udu for x > 0.

Proof: First, note that for a simple power we have∫ ∞

0

tγ−1e−xtdt = x−γ
∫ ∞

0

sγ−1e−sds by putting s = xt (7.10)

= x−γΓ(γ), γ > 0. (7.11) As4

Second, note that we may replace
∫∞

0
f(t)e−x by

∫ δ

0
f(t)e−x and incur an

exponentially small error as in the following lemma.

Lemma 7.4 For any δ > 0 and f satisfying A∫ ∞

δ

f(t)e−xtdt = o(x−γ) as x→∞ for all γ > 0. (7.12) As5
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Proof of Lemma 1: For x > c we have∣∣∣ ∫ ∞

δ

f(t)e−xtdt
∣∣∣ ≤ ∫ ∞

δ

|f(t)|e−cte−(x−c)tdt (7.13)

≤ e−(x−c)δ
∫ ∞

δ

|f(t)|e−ctdt = o(x−γ) x→∞ ∀ γ > 0.

(7.14) As7

Q.E.D.

Now in order to prove the theorem we choose N and let γ = α+Nβ+ 1.
We must show that

I(x)−
N∑
k=0

akγ(α+ kβ + 1)

xα+kβ+1
= o(x−γ) x→∞ (7.15) As8

since x−γ is the last retained term in the sum.
By the assumption B

f(t)−
N+1∑
k=0

akt
α+kβ = o(tα+(N+1)β) t ↓ 0. (7.16) As9

Hence there exists a constant K0 and δ > 0

∣∣∣f(t)−
N+1∑
k=0

akt
α+kβ

∣∣∣ ≤ K0t
α+(N+1)β 0 ≤ t ≤ δ. (7.17) As10

[Actually (
As10
7.17) is weaker than (

As9
7.16).] Hence

∣∣∣f(t)−
N∑
k=0

akt
α+kβ

∣∣∣ ≤ Ktα+(N+1)β 0 ≤ t ≤ δ (7.18) As11
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for K = K0 + aN+1. Thus

I(x) =

∫ δ

0

f(t)e−xtdt+ E1(x) where E1(x) = o(x−γ), x→∞ by Lemma 1

(7.19)

=

∫ δ

0

N∑
k=0

akt
α+kβe−xtdt+

∫ δ

0

(
f(t)−

N∑
k=0

akt
α+kβ

)
e−xtdt︸ ︷︷ ︸

E2(x)

+E1(x).

(7.20)

But by (
As11
7.18)∣∣∣ ∫ δ

0

f(t)−
N∑
k=0

akt
α+kβ)e−xtdt

∣∣∣ ≤ K

∫ δ

0

tα+(N+1)βe−xtdt (7.21)

≤ K

∫ ∞

0

tα+(N+1)βe−xtdt (7.22)

= Kx−(α+(N+1)β+1)Γ(α+ (N + 1)β + 1)
(7.23)

= const. x−γ−β (7.24)

= o(x−γ) x→∞. (7.25)

Thus

I(x) =

∫ δ

0

N∑
k=0

akt
α+kβe−xtdt+ E2(x) + E1(x) where E2(x) = o(x−γ), x→∞

(7.26)

=

∫ ∞

0

N∑
k=0

akt
α+kβe−xtdt+ E3(x) + E2(x) + E1(x) where (7.27)

E2(x) = o(x−γ), x→∞ by Lemma 1 (7.28)

=
N∑
k=0

akx
−(α+kβ+1)Γ(α+ kβ + 1) + E3(x) + E2(x) + E1(x). (7.29)

This proves (
As8
7.15). Q.E.D.
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corAS9 Corollary 7.5 Assume A.

∫ ∞

−∞
|g(t)|e−ct2dt <∞ for some c > 0.

B. g has an asymptotic expansion

g(t) =
∞∑
k=0

akt
k as t→ 0. (7.30) As20

Let

I(x) =

∫ ∞

−∞
g(t)e−xt

2

dt. (7.31) As21

Then

I(x) =
∞∑
k=0

a2kΓ(k + 1/2)

xk+1/2
as x→∞ (7.32) As22

is an asymptotic expansion of I(x).

Proof: By the same argument as in the theorem, i.e., Lemma 1, we commit

an exponentially small error in replacing the integral by

∫ δ

−δ
g(t)e−xt

2

dt. We

will write the remainder of the proof in an informal way because the details
of justification are exactly the same as in the proof of Watson’s Lemma. In
fact we will write equality of series even though one must interpret all steps
in terms of finite sums and behavior as x→∞ or t→ 0. In other words we
will concentrate just on the algebra. Thus we have

E1(x) = exponentially small error (7.33)

= O(e−xδ
2

). (7.34)

I(x) =

∫ δ

−δ
g(t)e−xt

2

dt+ E1(x) (7.35)

=

∫ δ

−δ

∞∑
k=0

akt
ke−xt

2

dt+ E1(x) (7.36)

=

∫ δ

−δ

∞∑
k=0

a2kt
2ke−xt

2

dt+ E1(x). (7.37)
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At this point we could replace the integrals by
∞∑
k=0

∫ ∞

−∞
t2ke−xt

2

dt which can

be done explicitly by integration by parts, and this would give the answer
(
As22
7.32). But instead let’s derive it from Watson’s Lemma.

Put s = t2. Then dt = ds/2
√
s. So

I(x) = 2

∫ δ

0

∞∑
k=0

a2ks
ke−xs

ds

2
√
s

+ E1(x) (7.38)

=

∫ ∞

0

∞∑
k=0

a2ks
k−1/2e−xsds+ E1(x) (7.39)

=
∞∑
k=0

a2kΓ(k + 1/2)

xk+1/2
+ E(x) by Watson’s Lemma with α = −1

2
, β = 1.

(7.40)

Recall that these equations are not identities but asymptotic expansions.
Q.E.D.

Using the same ideas, here is another method. Let

f(t) =

∫ ∞

−∞
e−xh(t)dt

where h need not be quadratic but looks like this:

We assume for simplicity that h(0) = 0 but if not this can be subtracted from
h(t) changing our result by an overall factor of e−th(0). As in the quadratic
case the main contribution to f(t) will come, for large x, from a neighborhood
of t = 0 say |t| ≤ δ, the error being∫ ∞

−∞
e−tx

2

x2ndx = t−n−1/2 (2n)!

n!22n
π1/2

exponentially small, e−xh(s). (We are going to get power decay of f(x).) Now
since h is a minimum at t = 0 we have h′(t) = 0. Hence for small t

h(t) =
h′′(0)

2
t2 +O(t3) as t→ 0.
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Assume h′′(0) > 0. Our objective is to get the leading term in the asymptotic
expansion of f(x) (if there is such an expansion). So we ignore the O(t3)
terms to get

f(x) ∼
∫ δ

−δ
e−x

h′′(0)
2

t2dt (7.41)

∼
√

2π√
h′′(0)x

. (7.42)

So

f(x) ∼

√
2π

xh′′(0)
.

Definition. The Γ function is

Γ(x) =

∫ ∞

0

ux−1e−udu, x > 0. (7.43) As27

Note:
Γ(n+ 1) = n! (7.44) As28

Proof: Γ(1) =
∫∞

0
e−udu = 1 = 0!. So (

As28
7.44) holds for n = 0. Induction:

Note that for x > 0,

Γ(x+ 1) =

∫ ∞

0

uxe−udu (7.45) As29

= −uxe−u
∣∣∞
0

+

∫ ∞

0

e−u
dux

du
du

=

∫ ∞

0

e−uxux−1du = xΓ(x).

So
Γ(x+ 1) = xΓ(x) for x > 0. (7.46) As30

Thus if Γ(n+ 1) = n! then Γ(n+ 2) = (n+ 1)Γ(n+ 1) = (n+ 1)!. Q.E.D.

Some values: (i) Γ(1/2) =
√
π.

(ii) Γ(k + 1
2
) = 2−k

√
π(2k − 1)(2k − 3) · · · 3 · 1, k ≥ 1.

Proof: Γ(1
2
) =

∫∞
0
t−1/2e−tdt =

∫∞
−∞ e−s

2
ds =

√
π. The identity (ii)

follows now by induction.
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corAS10 Corollary 7.6 Suppose that a < 0 < b (a or b or both could be infinite) and
that h(t) ≥ 0 for t ∈ (a, b). Assume that h(0) = 0 and h(t) > 0 for all other
t in (a, b). Assume that h is in C∞(a, b) and that h′′(0) 6= 0. Finally assume
that
A.

∫ b

a
e−ch(t)dt <∞ for some c > 0

AND
A’.

∫
|t|≥δ e

−xh(t)dt = o(x−1/2) as x→∞ ∀ δ > 0.
Let

I(x) =

∫ b

a

e−xh(t)dt x > c.

Then

I(x) =

√
2π

xh′′(0)
+ o(x−1/2).

Proof: By Taylor’s theorem with remainder we may write

h(t) =
1

2
h′′(0)t2g(t)

for t near zero where g is smooth and g(0) = 1. Choose δ so small that
g(t) > 1/2 for |t| < δ.

Let s = t
√
g(t) on (−δ, δ). then

ds/dt =
√
g(t) + tg′(t)/2

√
g(t).

At t = 0 this is one. So we may choose δ even smaller (if necessary) so that
ds/dt > 0 on [−δ, δ]. Since s is a strictly monotone function of t on [−δ, δ]
we may solve for t in terms of s and we may expand t in terms of s to any
finite order. The expansion begins:

t =
( dt
ds

)∣∣∣
s=0

s+
1

2

( d2t

ds2

)∣∣∣
s=0

s2 + · · · .

But (dt/ds)|s=0 = 1/(ds/dt)|t=0 = 1. Hence

t = s+O(s2) as s→ 0.

Now

I(x) =

∫ δ

−δ
e−xh(t)dt+

∫
a<t<b,|t|≥δ

e−xh(t)dt.
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By Assumption A′ the second term is o(x−1/2). On the interval [−δ, δ] make
the change of variables s = t

√
g(t). Then∫ δ

−δ
e−xh(t)dt =

∫ β

α

e−x
h′′(0)

2
s2 dt

ds
ds α < 0, β > 0 (7.47)

=

∫ β

α

e−x
h′′(0)

2
s2(1 +O(s))ds (7.48)

=
Γ(1/2)

(xh′(0)/2)1/2
+O(x−3/2) as x→∞ by Corollary

corAS9
7.5.

(7.49)

QED

7.3.2 Stirling’s formula

Corollary 7.7

lim
x→∞

Γ(x+ 1)√
2πe−xxx+1/2

= 1

Proof: Make the substitution u = x+ tx in Equation (
As29
7.45) to find

Γ(x+ 1) =

∫ ∞

0

uxe−udu (7.50)

=

∫ ∞

−1

{x(1 + t)}xe−x(1+t)xdt (7.51)

= xx+1e−x
∫ ∞

−1

e−xt(1 + t)xdt (7.52)

= xx+1e−x
∫ ∞

−1

e−x(t−log(1+t))dt (7.53)

So take h(t) = t− log(1 + t). Then h′(t) = 1− 1/(1 + t). Therefore h has a
minimum at t = 0. Moreover h′′(0) = 1. Hence, by Corollary

corAS10
7.6,∫ ∞

−1

e−xh(t)dt =
√

2π/x+ o(x−1/2 as x→∞.

This proves Stirlings formula.
The most frequently used form of Stirling’s formula is for integer values

of x. This takes the form:
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STIRLING’S FORMULA

lim
n→∞

Γ(n+ 1)√
2πe−nnn+1/2

= 1
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7.4 The Method of Stationary Phase

Ref. Sec.6.5 of Bender and Orszag

Theorem 7.8 Let f and ψ be defined on [a, b] with f ∈ C ′[a, b] and ψ real
with ψ′(t) 6= 0 on (a, b] but ψ′(a) = 0. Assume that ψ is in Cp[a, b] and
ψ(p)(a) 6= 0, while ψ(n)(a) = 0, n = 1, 2, . . . , p− 1 and f(a) 6= 0.

Let

I(x) =

∫ b

a

f(t)eixψ(t)dt.

Then

I(x) = f(a)eixψ(a)±iπ/2p
[ p!

x | ψ(p)(a)

]1/pΓ(1/p)

p
O(x−1) as x→ +∞

where I = sgnψ(p)(a).

Example. I(x) =
∫ π/2

0
eix cos tdt. Here t = 0 is a stationary point ψ(t) =

cos t, f(t) = 1, ψ(0) = 1, ψ′(0) = 0, ψ′′(0) = −1. So p = 2. Therefore

I(x) = eix−iπ/4
[2

x

]1/2

· 1

2
Γ
(1

2

)
︸ ︷︷ ︸
√
π

+O(x−1) as x→∞.

Proof of Theorem: Write for small ε

I(x) =

∫ a+ε

a

f(t)eixψ(t)dt+

∫ b

a+ε

f(t)eixψ(t)dt.

The second integral is O(x−1) as x → +∞ by the lemma. So we may
ignore it for any fixed ε > 0. Now the idea is to choose ε so small that
first integral can be adequately approximated by using the first terms of the
expansion of f and ψ at a. Thus we use the approximation f(t)

.
= f(a) and

ψ(t)
.
= ψ(a) + ψ(p)(a)

p!
(t− a)p and we omit justification of this approximation

(as do Bender and Orszag). Thus

I(x) = f(a)

∫ a+ε

a

eix(ψ(a)+ψ(p)(a)(t−a)p/p!)dt+O
(1

x

)
(7.54)

= f(a)eixψ(a)

∫ ε

0

eixαs
p

ds+O
(1

x

)
(7.55)
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where α = ψp(a)
p!

.

Case α > 0. Put s = eiπ/2p
(
u
xα

)1/p
. Then

sp = eiπ/2
u

xα
= i

u

xα
.

Therefore

I(x) = f(a)
(eixψ(a)+iπ/2

(xα)

) ∫ xαεpeiπ/2p

0

e−u
u

1
p
−1

p
du.

Case α < 0 yields the other sign and C is which must be rotated down.

The relevant substitution is s = e−iπ/2p
(

u
x|α|

)1/p
.

Case α > 0. For p = 2, 3, 4, . . . put

s = (eiπ/2p/(xα)1/p)u1/p on the lower half plane Imu ≤ 0. (7.56) As51

This is a well defined continuous function of u in the shaded region if one
chooses the positive pth root on the positive “x” axis. Then

ds =
eiπ/2p

(xα)1/p

1

p
u

1
p
−1du (7.57) As52

and also
sp = (eiπ/2/xα)u = iu/xα. (7.58) As53

So u = −ixαsp. Hence as s traverses the interval [0, ε] on the positive “x”
axis u traverses the contour C1 on the negative “y” axis. Thus∫ ε

0

eixαs
p

ds = [eiπ/2p/(p(xα)1/p)]

∫
C1

e−uu
1
p
−1du (7.59) As54

But ∫
C1

e−uu
1
p
−1du =

∫ xαεp

0

e−uu
1
p
−1du+

∫
C2

e−uu
1
p
−1du (7.60) As55

by analyticity of e−uu
1
p
−1 in the open doted region. (The singularity at the

origin is not too bad.) The first term on the right of (
As55
7.60) converges to
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Γ(1/p) as x → ∞ with exponentially small error. Moreover on C2 we may
write u = reiθ with r = xαεp and −π/2 ≤ θ ≤ 0. Thus∣∣∣ ∫

C2

e−uu1/p−1du
∣∣∣ =

∣∣∣ ∫ 0

−π/2
e−re

iθ

r
1
p
−1eiθ(

1−p
p

)irdθ
∣∣∣ (7.61)

≤ r1/p

∫ 0

−π/2
e−r cos θdθ (7.62)

≤ r1/p

∫ π/2

0

e−2r/πdt = r1/pO
(1

r

)
(7.63)

= x1/pO
(1

x

)
. (7.64) As57

Now combine (0), (
As54
7.59), (

As55
7.60), (

As56
??) and (

As57
7.64). Q.E.D.

7.5 The Method of Steepest Descent

Objective: To find asymptotic behavior of

I(x) =

∫ b

a

f(t)exρ(t)dt

where f and ρ are analytic, a and b are complex or infinite, and the integral
is along some contour in the complex plane.

Under these circumstances the contour can be deformed without changing
the value of the integral. We take advantage of this by deforming to a contour
on which the imaginary part of ρ is (essentially) constant. This will eliminate
the oscillation problem.

Example 1. (From Bender and Orszag, p.281 Example 1)

I(x) =

∫ 1

0

ln t eixtdt.

Note that the method of stationary phase fails: ψ(t) = t has no stationary
point. Moreover f(t) = ln t is singular at 0 so integration by parts fails.

Step 1. Deform path from to . Now along C2, e
ixt = e−xT eixu, 0 ≤ u ≤ 1,

where we have put t = u+ iT . So for fixed x > 0,
∫
C2
→ 0 as T →∞. Hence

I(x) =

∫ i∞

0

ln t eixtdt−
∫ 1+i∞

1

ln t eixtdt.
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On these paths there is no oscillation of the exponential factor because it has
constant imaginary part on each path. To see this put t = is, 0 ≤ s <∞ on
the first path and t = 1 + is on the second path to get

I(x) = i

∫ ∞

0

ln(is)e−xsds− ieix
∫ ∞

0

ln(1 + is)e−xsds.

These are both Laplace integrals and so the problem is now in principle
solved: We have gotten rid of the oscillatory integrals by deforming the
path. It happens that the first integral can be done explicitly: Put u = sx.
Then

i

∫ ∞

0

ln(is)e−xsds =
i

x

∫ ∞

0

ln(iu/x)e−udu (7.65)

= (i/x)
[
ln(i/x) +

∫ ∞

0

(lnu)e−udu︸ ︷︷ ︸
−γ (Eulers constant)

]
(7.66)

=
i lnx+ iπ/2− iγ

x
. (7.67)

The second term has an asymptotic expansion via Watson’s Lemma:∫ ∞

0

ln(1 + is)e−xsds =
∞∑
n=1

∫ ∞

0

(−is)n

n
e−xsds (7.68)

=
∞∑
n=1

(−i)n

nxn+1

∫ ∞

0

une−udu (7.69)

=
∞∑
n=1

(−i)n(n− 1)!

xn+1
. (7.70)

Note that this is asymptotic only and not convergent because the series for
ln(1 + is) only converges in a neighborhood of s = 0. This is all that is
required for aymptotic expansion. Thus

I(x) ∼
−i lnn+ i(π

2
− γ)

x
− ieix

∞∑
n=1

(−i)n (n− 1)!

xn+1
as x→∞.

7.5.1 Constancy of phase and steepness of descent

Consider an analytic function ρ(t) = ϕ(t) + iψ(t) where t = u+ iv is a com-

plex variable. We have seen that the asymptotic properties of
∫ b

a
f(t)exϕ(t)dt
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depends on the peaking property of ϕ. It is fortuitous that these peaking
properties are optimal along paths of constant ψ as we shall now see.

Let C be a curve of constant ψ and let t ∈ C.

Case a. ρ′(t) 6= 0. The Cauchy Riemann equations read ϕu = ψv, ϕn =
−ψu. So

∇ϕ · ∇ψ = ϕuψu + ϕvψv = −ϕuϕv + ϕvϕu = 0.

So∇ϕ is⊥ ∇ψ and therefore∇ϕ is parallel to C. Hence, among all directions
starting from t, ϕ varies most rapidly in the tangent direction of C. Thus ϕ
ascends most rapidly in one direction along C and descends most rapidly in
the other direction along C. [The level curves of φ are orthogonal to C.] So
the curves of constant phase are also steepest curves for

|exρ(t)| = exϕ(t).

In Example 1 the endpoint t = 1 of the constant phase path C3 is a point
with ρ′(t) 6= 0. Fortunately, with t = u + iv, ϕ(t) ≡ Re it = −v (= −s in
that example) reaches a maximum along C3 at the end point t = 1. This was
the source of our success in the asymptotic expansion of

∫
C3

.

Case b. ρ′(t) = 0. Typical behavior of ρ near such a point is illustrated
by the case ρ(t) = tn near zero, n = 2, 3, . . . since the expansion of ρ around
a point t0 is ρ(t) = a0 +(t− t0)n(c+O(t− t0)) if ρ(k)(t0) = 0, k = 1, . . . , n−1
and ρ(n)(t0) 6= 0.

Use polar coodinates: t = reiθ. Then

tn = rneinθ (7.71)

= rn cosnθ + irn sinnθ (7.72)

= ϕ+ iψ. (7.73)

The directions of most rapid variation of ϕ are the directions in which
cosnθ = 1 (steepest ascent) and cosnθ = −1 (steepest descent). As one
increases θ one alternately reaches curves of steepest ascent and steepest de-
scent. In either case sinnθ = 0, so these are precisely the curves of constant
phase emanating from the origin.

In case n = 2 the graph of ϕ(t) is clearly saddle shaped:
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A point t 3 ρ′(t) = 0 is called a saddle point in this business. See Bender
and Orszag for more pictures.

In Example 1 the maximum of ϕ along the curves C1 and C3 of constant
phase occurred at the endpoint of each path where ρ′ 6= 0. If a maximm of
ϕ occurs at an interior point of a curve of constant phase it will necessarily
be a saddle point. [This is a consequence of Cauchy-Riemann equations.]

The following example illustrates this case.

Example 2. (Bender and Orszag p.91) Asymptotic behavior of Bessel
function J0(x).

Def. J0(x) =
∫ π/2

−π/2 cos(x cos θ)dθ/π.

Step 1. Get this into standard form. Thus

πJ0(x) = Re

∫ π/2

−π/2
eix cos θdθ.

To coincide with others’ notation, we also rotate the θ plane by putting
t = iθ. Now cos θ = eiθ+e−iθ

2
= et+e−t

2
= cosh t. so

πJ0(x) = Re
1

i

∫ iπ
2

−iπ
2

eix cosh tdt.

Step 2. Change to contour of constant phase.
Now the phase is the same at the two endspoint: i cosh −iπ

2
= i cos −π

2
= 0

and i cosh iπ
2

= 0 also. Nevertheless they do not actually lie on a common
contour of constant phase.

To see what the constant phase contours are like write t = u + iv and
ρ(t) = i cosh(u + iv) = i[coshu cosh iv + sinhu sinh iv] = i[coshu cos v +
sinhui sin v]. So Imρ(t) = coshu cos v ≡ ψ(t) and Reρ(t) = − sinhu sin v ≡
ϕ(t). Therefore the horizontal lines v = π/2 and v = −π/2 are curves of
constant phase 0. The curves coshu cos v = 1 are also curves of constant
phase 1. One of them goes through 0. Thus

ρ(t) = ϕ(t) + iψ(t) ϕ(t) = − sinhu sin v ψ(t) = coshu cos v

and

πJ0(x) = Re
1

i

∫ iπ/2

−iπ/2
exρ(t)dt t = u+ iv
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Since Reρ(t) = − sinhu sin v, |exρ(t)| is very rapidly decreasing on the distant
parts of contours C1, C2, C. Hence we may change from the original contour
C0 to the three contours C1, C2, C, of constant phase.

Step 3. Evaluation. On C1 we have Imρ(t) = 0, so
∫
C1
exρ(t)dt is real.

Hence it contributes nothing to J0(x). Similarly for
∫
C2

. Consequently we
have

πJ0(x) = Re
1

i

∫
C

eix cosh tdt. (7.74) As65

As we saw, ϕ(t) ≡ Rei cosh t = − sinhu sin v goes to −∞ as we got to ∞ in
either direction on C. The asymptotic behavior is therefore determined by
any peaks in ϕ(t) on C. These are saddle points. To find them set ρ′(t) = 0.

Thus i sinh t = 0. t = 0 is clearly a saddle point. It is the only one on C.
[Exercise.]

Since the asymptotic behavior is determined by a neighborhood of 0 on
C we can approximate C locally by a straight line whose slope is determined
thus

coshu cos v = 1.

For small u and v this is
(
1 + u2

2

)(
1 − v2

2

)
= 1. So 1 + u2−v2

2
= 1 to second

order. Therefore
u2 = v2 : or u = ±v.

The curves of constant phase look like this.

This pattern repeats itself as one goes up the y axis nπ units. Thus if we
parametrize locally on C by

t = (1 + i)s − ε < s < ε

we can expect some kind of approximation to J0(x) as x → ∞. Thus, to
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leading order

πJ0(x) ∼ Re
1

i

∫ s=ε

s=−ε
eix(1+t

2)dt (7.75)

∼ Re
eix

i

∫ ε

−ε
e−2xs2(1 + i)ds (7.76)

∼ Re(1− i)eix
√

π

2x
(7.77)

= Re2ei(x−
π
4
)

√
π

nx
(7.78)

So

J0(x) ∼
√

2

πx
Reei(x−

π
4
)

Therefore

J0(x) ∼
√

2

πx
cos

(
x− π

4

)
x→∞.

[Note: This agrees with the Example on p.519 if one compares ReI(x).]
To get the full asymptotic expansion of J0(x) we must go back to (

As65
7.74)

and evaluate it more carefully. On C, ρ(t) = i+ ϕ(t) where ϕ(t) is real. We
parametrize the curve by r = −ϕ(t) which goes from 0 to +∞ on both halves
of C. Now i cosh t = i− r so i sinh tdt = −dr. Therefore

dt =
−dr
i sinh t

=
−dr

i
√

(1 + ir)2 − 1
=

−dr
i
√

2r
√

+i− r
2

=????

πJ0(x) = Re
2

t

∫ ∞

0

eixe−xr
1 + i

2
√
r

dr√
1 + it

2

= Re(1− i)eix
∫ ∞

0

e−xr
dr

√
r
√

??

So

πJ0(x) = Re
√

2ei(x−
π
4
)

∫ ∞

0

1
√
r
√

1 + ir
2

e−xrdr.

To get the full asymptotic expansion one now expands 1√
1+ ir

2

in a power

series valid for small r and informally integrates term by term getting a valid
asymptotic expansion. The final form 1 according to Bender and Orszag,
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who get
√

1− dr
2

instead of my
√

1 + ir
2
, is

J0(x) =

√
2

xπ

[
α(x) cos

(
x− π

4

)
+ β(x) sin

(
x− π

4

)]
where

α(x) ∼
∞∑
k=0

[Γ(2k + 1
2
)]2(−1)k

π(2k)!(2x)2k
x→∞

and

β(x) ∼
∞∑
k=0

[Γ(2k + 3
2
)]2(−1)k+1

π(2k + 1)!(2x)2k+1
x→∞.

Reference for α(x) and β(x), Bender and Orszag, p.294.
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7.6 Problems on asymptotic expansions

(Last homework of 615)

1. (Watson’s Lemma) Suppose that g(t) is a polynomially bounded function
on [0,∞). That is

|g(t)| ≤ C(1 + tn) 0 ≤ t <∞

for some constant C and some integer n ≥ 0. Suppose further that g has an
asymptotic expansion as t ↓ 0:

g(t) ∼
∞∑
n=0

ant
n, t ↓ 0.

Let

I(x) =

∫ ∞

0

g(t)e−xtdt x > 0.

Prove that I(x) has the asymptotic expansion

I(x) ∼
∞∑
n=0

n!anx
−n−1 x→∞.

2. Find the asymptotic behavior as x→∞ of I(x) where

I(x) =

∫ ∞

0

[ln(1 + it)]e−xtdt.

3. Find the asymptotic behavior of J0(x) as x → ∞ up to and including

terms of order x−5 1
2 (i.e., x−11/2).
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8 Old Prelims

Math 615 Prelim # 1 (in class) Friday, October 10, 2003

N.B. Use a writing style which leaves no ambiguity as to what your ar-
gument is. Your writing style is a part of this test.

1. Suppose that f : [−1, 1] → R satisfies∫ 1

−1

|f(x)|2dx = 21

and ∫ 1

−1

f(x)dx = 6.

What can you say about
∫ 1

−1
xf(x)dx?

2.Which of the following differential operators are symmetric on the in-
terval [0, 1]?

a Lu(x) = (x2 + 1)u′′(x) + 2xu′(x) + (sinx)u(x).
b. Lu(x) = 3u′′(x) + 2xu′(x) + (x2 + 1)u(x).

3. Write the Green function for the boundary value problem

u′′ − u = f on [0, 1]

u(0) = 0

u(1) = 0

in two ways.
a. in closed form (i.e. no series.)
b. as an eigenfunction expansion.

4. Which of the following are linear functionals on the given vector space
V ?

a. V = R2, F ((x1, x2)) = 3x1 + 5x2
2

b. V = C([0, 1]), F (φ) = φ(0) + 5
∫ 1

0
φ(x)x2dx?
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9 Appendix: Review of Real numbers, Se-

quences, Limits, Lim Sup, Set notation

These notes are intended to be a fast review of elementary facts concerning
convergence of sequences of real numbers. The goal is to give a self contained
exposition of the notion of completeness of the real number system. Com-
pleteness is responsibe for the existence of solutions to ordinary differential
equations, partial differential equations, eigenvalue problems, and almost ev-
erything else that guides our intuition in analysis. The main ideas in these
notes are usually taught in a freshman calculus course. Some of these ideas
are developed over and over again in later courses. Chances are that this is
at least the third time around for most of you ... but it may have been a
while... .

Recall that a rational numbber is a number of the form m/n where m
and n are integers (i.e. “whole numbers”.) If x = m/n is a rational number
it is always possible to choose m and n to have no positive integer factors in
common. We say that x is then represented in “lowest terms”.

Example of an irrational number. The suare root of 2 is not rational.Proof:
Assume that x = m/n is represented in lowest terms and that x2 = 2. Then
m2 = 2n2. So m2 is even (i.e. is a multiple of 2.) If m itself were odd then
m2 would also be odd because (2k+1)2 = 2(k2 +2k)+1. So m must be even.
Say m = 2j. Therefore (2j)2 = 2n2. So 2j2 = n2. It now follows that n is
also even. This contradicts our assumption that m and n have no common
factors. So there is no rational number x satisfying x2 = 2. Q.E.D.

Denote by Q the set of rational numbers and by R the set of real numbers.
We will be using the symbols +∞ and −∞ in this course quite a bit. But it
is a universally accepted convention not to call them real numbers. So they
are not in R. Some authors like to adjoin them to R and then call the result
the extended real number system: R ∪ {∞} ∪ {−∞}. We will do this also.
Notation: (−∞,∞) = R, (−∞,∞] = R ∪ {∞}, etc. But R still means the
set of real numbers and excludes ±∞.

Addition, subtraction, multplication and division ( but not by zero) make
sense within Q and also within R. ( Both are fields.) Moreover Q and R
both have an order relation on them. (I.e. a < b has a well defined meaning,
which is in fact nicely related to the algebraic operations. E.g. a < b implies
a+c < b+c, etc.) The big difference between Q and R is that Q is full of holes.
For example the sequence of rational numbers 1, 14/10, 141/100, 1414/1000,
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... “would like” to converge to 21/2. But 21/2 isn’t there (in Q.) There is a
hole there. The next few pages are devoted to making this anthropomorphic
discussion precise.The key concept is that of a Cauchy sequence. Theorem 1
on page 4 says that there are no holes in R.

Definition. A set S ⊂ R (real numbers) is bounded if there is a real number
M such that |x| ≤M for all x in S.

S is bounded above if there is a real number M such that x ≤M for all x
in S.

S is bounded below if for some M in R, x ≥M for all x in S.

Definition. If M is a number such that x ≤M for all x in S then M is called
an upper bound for S.

Definition. If L is an upper bound for S such that L ≤ M for all upper
bounds M of S then L is called the least upper bound for S. We write
L = lubS.

In order to prove anytning about the real numbers one needs , of course,
a definition of them. But no axiomatic treatment of the real number system
will be given here. ( See Rudin, Principles of Analysis, Chapter 1, if you
really want one.) Instead I am just going to list the key property - order
completeness- which any definition of the real numbers must include, either
in the following form or some equivalent form.

R is order complete: that is, if S is a nonempty set of real numbers which
is bounded above then S has a least upper bound in R.

Remark. The set Q of rational numbers is not order complete. For example
if S = {x in Q : x2 < 2} then S does not have a least upper bound in Q.
But S does have a least upper bound in R. What is it?

Definition. A sequence is a function from the set Z := {1, 2, 3, . . .} to R.
Notation: s(i) = si.

Definition. If {sn} is a sequence then {tk} is a subsequence if there is a
sequence integers nk such that n1 < n2 < n3 . . . and tk = snk

.

Definition. A sequence {sn} is said to converge to a number L in R if for
each ε > 0 there is an integer N such that

|sn − L| < ε whenever n ≥ N.

Notation. L = lim
n→∞

sn or sn → L as n→∞.
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Proposition 9.1 If sn is an increasing sequence of real numbers bounded
above then lim

n→∞
sn exists and equals lub{sn : n = 1, 2, . . .}.

Proof: Let L = lub{sn}∞n=1. Then sn ≤ L for all n. Let ε > 0. Then
L − ε is not an upper bound for {sn}∞n=1. Thus there exists N such that
sN > L− ε. Since sn ≥ sN for all n > N we have sn > L− ε for all n > N .
Hence sn − L > −ε. But sn − L ≤ 0. Hence |sn − L| < ε if n ≥ N .

Remarks. 1) If S is bounded below, then −S is bounded above. By −S we
mean {−x : x ∈ S}.

2) Greatest lower bound is defined analogously to least upper bound.
Notation. glb S = greatest lower bound of S.

3) Notation. If S is a nonempty set of real numbers which is not bounded
above we write

lub S = +∞.

If S is nonempty and not bounded below we write glb S = −∞.

Exercise. (Write out, but don’t hand in) Prove: glb(S) = −lub(−S) for
any nonempty set S.

Definition. For any sequence {sn}∞n=1 we write lim
n→∞

sn = +∞ if for each real

number M there is an integer N such that

sn ≥M for all n ≥ N.

[Similar definition for lim
n→∞

sn = −∞.]

Now let {sn}∞n=1 be an arbitrary sequence of real numbers. Set

ak = lub{sn : n ≥ k}.

Since {sn : n ≥ k} ⊃ {sn : n ≥ k+ 1} we have ak ≥ ak+1. Thus the sequence
{ak}∞k=1 is a decreasing sequence.

Using the preceding proposition and definitions, we see that either
a) For all k, ak = +∞

or
b) For all k, ak is finite (i.e., real) and the set {ak}∞k=1 is bounded below

or
c) For all k, ak is finite and{ak : k = 1, 2, . . .} is not bounded below.
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In case b) lim
k→∞

ak exists (and is real) and we write

lim
n→∞

sup sn = lim
k→∞

ak.

In case a) we write
lim
n→∞

sup sn = +∞.

In case c) we write
lim
n→∞

sup sn = −∞.

Remarks. 4) sup stands for supremum and means the same thing as lub. inf
stands for infinum and means the same as glb.

5) The preceding definition of lim sup sn can be written succinctly in all
cases as

lim
n→∞

sup sn = lim
k→∞

sup{sn : n ≥ k}.

Similarly we define

lim
n→∞

inf sn = lim
k→∞

inf{sn : n ≥ k}.

Proposition 9.2 If lim
n→∞

sn := L exists and is real (i.e., finite) then

lim sup sn = L = lim inf sn.

Conversely if lim sup sn = lim inf sn and both are finite then lim sn exists and
is equal to their common value.

Proof: Assume lim sn exists and denote it by L. Let ε > 0. ∃N depending
on ε such that {sn : n ≥ N} ⊂ [L − ε, L + ε]. Thus for all k ≥ N , ak :=
sup{sn : n ≥ k} ≤ L+ ε. Hence lim

k→∞
ak ≤ L+ ε. Since the inequality holds

for all ε > 0 and the left side is independent of ε we have lim
k→∞

ak ≤ L. Thus

lim
n→∞

sup sn ≤ L. Similarly lim
n→∞

inf sn ≥ L. But note that

inf{sn : n ≥ k} ≤ sup{sn : n ≥ k}.

Hence one always has (for any sequence)

lim
n→∞

inf sn ≤ lim
n→∞

sup sn.
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But we saw that
lim
n→∞

sup sn ≤ L ≤ lim
n→∞

inf sn.

Hence we have equality. Q.E.D.

Proof of converse. Assume

lim
n→∞

sup sn = lim
n→∞

inf sn = L

(L is assumed finite, i.e., real).
Let

ak = inf{sn : n ≥ k}
and

bk = sup{sn : n ≥ k}.
Then lim ak = lim bk = L. Let ε > 0. There is an integer N1 (depending
on ε, as usual) such that |ak − L| < ε whenever k ≥ N1. Similarly ∃N2 3
|bk − L| < ε whenever k ≥ N2. Let N = max{N1, N2}. Then |ak − L| < ε
and |bk − L| < ε if k ≥ N . Thus L − ε < ak ≤ bk < L + ε if k ≥ N . In
particular L− ε < aN ≤ bN < L+ ε.

Thus
L− ε < aN ≤ sk ≤ bN < L+ ε ∀ k ≥ N.

So
|sk − L| < ε ∀ k ≥ N.

Q.E.D.

Definition. A sequence {sn}∞n=1 is CAUCHY if for each ε > 0 ∃N 3

|sn − sm| < ε ∀ n,m ≥ N.

propR3 Proposition 9.3 Any convergent sequence {sn}∞n=1 of real numbers is Cauchy.

Proof: Given ε > 0 ∃N 3

|sn − L| < ε/2 ∀ n ≥ N.

Then

|sn − sm| = |sn − L+ L− sm| (9.1)

≤ |sn − L|+ |L− sm| (9.2)

< ε/2 + ε/2 = ε if n,m ≥ N. (9.3)

Q.E.D.
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Theorem 9.4 Every Cauchy sequence of real numbers converges to a real
number.

Remarks. 6) The property stated in Theorem 1 is usually referred to as the
completeness of the set R of real numbers. The set of rational numbers is
not complete. I.e., there is a Cauchy sequence sn in Q which does not have
a limit in Q. E.g. take s1 = 1, s2 = 1.4, s3 = 1.41, s4 = 1.414, . . ., (so that
sn →

√
2, which is not in Q).

Proof of Theorem 1: Let {sn}∞n=1 be a Cauchy sequence.

Step 1. The set {sn : n = 1, 2, . . .} is bounded because if we choose ε = 1
in the definition of Cauchy sequence then we know that there is an integer
N 3 |sn−sN | < 1 if n ≥ N . Hence |sn| = |sn−sN +sN | ≤ |sn−sN |+ |sN | ≤
1 + |sN | if n ≥ N . Thus if we put K = max{|s1|, |s2|, . . . , |sN−1|, 1 + |sN |}
then |sn| ≤ K for all n.

Step 2. We now know that lim
n→∞

sup sn is a real number. Let L =

lim
n→∞

sup sn.

Claim: lim sn = L. For let ε > 0. Choose N such that |sn − sm| < ε
∀ n,m ≥ N . Then

sN − ε < sn < sN + ε ∀ n ≥ N.

Thus if ak = sup{sn : n ≥ k} then

sN − ε ≤ ak ≤ sN + ε ∀ k ≥ N.

But by definition L = limk→∞ak. Thus taking the limit as k → ∞ we get
sN − ε ≤ L ≤ sN + ε. So |sN − L| ≤ ε. Hence if n ≥ N then

|sn − L| ≤ |sn − sN |+ |sN − L| ≤ ε+ ε = 2ε ∀ n ≥ N.

Q.E.D.

9.1 Set Theory Notation

Notation. If A and B are subsets of a set S then the intersection of A and
B, (A ∩B), is defined by

A ∩B = {x ∈ S : x ∈ A and x ∈ B}.
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The union of A and B is defined by

A ∪B = {x ∈ S : x ∈ A or x ∈ B or both)}.

The complement of A is

Ac = {x ∈ S : x /∈ A}.

The difference is
A−B = {x ∈ A : x /∈ B}.

If f : S → T is a function and B ⊂ T then f−1(B) is defined by

f−1(B) = {x ∈ S : f(x) ∈ B}.
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9.2 How to communicate mathematics

Before starting the following homework here are some useful tips on how to
write for a reader other than yourself. The three most important rules are

Rule #1. Remove ambiguity.

Rule #2. Remove ambiguity.

Rule #3. Remove ambiguity.

Here are some examples of ambiguity.
Example 1. Consider the statement

1 = 2 =⇒ 3 = 4. (9.4) C1

Is this statement true? Well, it depends on what you mean by the symbol
=⇒ .

Meaning #1. “implies that”. If this is what you mean by the symbol
=⇒ then the statement (

C1
9.4) says

1 = 2 implies that 3 = 4. (9.5) C2

In this case statement (
C1
9.4) is TRUE. Its equivalent to the standard if - then

statement “If 1 = 2 then 3 = 4.” All you have to do is add 2 to both sides
of the equation 1 = 2 to deduce (correctly) that 3 = 4.

Meaning #2. “This implies that”. If this is what you mean by the symbol
=⇒ then the statement (

C1
9.4)says, when translated into english,

1 = 2. This implies that 3 = 4. (9.6) C3

The statement (
C3
9.6) now consists of two sentences, one of which is false. So

statement (
C3
9.6) is false and therefore statement (

C1
9.4) is FALSE.

So what to do? In principle you could define a symbol to mean anything
you want (but only one meaning!). But the symbol =⇒ is quite universally
used to mean “implies that”. Even the TeX command for =⇒ is “back-
slashimplies”, not “backslashThis implies”. It would be easiest on readers to
use the symbol =⇒ always to mean “implies” or “implies that” (which has
the same logical content.) Moreover there is already a standard symbol for
“This imples that”. Its the symbol ∴.
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This symbol can be translated into English in a number of logically equiv-
alent ways. Here are some of them.

∴ can be translated as

“This implies that”, “Therefore”, “Hence”, “So”, “Consequently”.

When writing for a journal you have to use the words, not the symbols.
Moreover good prose form is better if you don’t use the same one of these five
phrases at the beginning of several sentences in a row. Technically you could
be correct in starting five sentences in a row with the word “Therefore”. But
some readers might question the quality of the highschool you went to.

Often linked with the evils of the misuse of the symbol =⇒ is the fail-
ure to punctuate sentences. The evolution of grammar over the last 5000
years has been aimed at precision of communication. Its still far from per-
fect in normal social, legal and political communication. We have to do
better. Keep in mind, for example, that the statement “ x = 2.” really is
an english sentence. It has a subject, x, a verb, “equals”, and an object, 2,
AND A PERIOD at the end of the sentence. Yes, even a period can help
clarity in communication of mathematics. COMMUNICATION IN MATHE-
MATICS CONSISTS OF A BUNCH OF GRAMMATICALLY COMPLETE
SENTENCES.

If your TA can’t figure out what you mean, even before he tries to figure
out if you’re right, expect trouble from him (and me.)

A final word. Don’t think that “context” is a reasonable basis for a reader
to decide how to interpret an ambiguous statement. More often than not this
kind of thinking just means that you expect the reader to interpret correctly
what you wrote because he/she already knows what the argument should be.

All of this was well understood quite some time ago. Here is some ancient
wisdom.

“ A good scientist knows how to say exactly what he means.
A good politician knows how to say exactly the opposite of what he

means.
A good philosopher knows how to say things with no exact meaning.”

Lezar el Gralidin, 1582 - 1631
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9.3 Cute Homework Problems

1. Find the lim sup and lim inf for the following sequences:

a) 1, 2, 3, 1, 2, 3, 1, 2, 3, . . .

b) {sin(nπ/2)}∞n=1

c) {(1 + 1/n) cosnπ}∞n=1

d) {(1 + 1/n)n}∞n=1

2. If the lim sup of the sequence {sn}∞n=1 is equal to M , prove that the lim
sup of any subsequence is ≤M .

3. If {sn}∞n=1 is a bounded sequence of real numbers and lim
n→∞

inf sn = m,

prove that there is a subsequence of {sn}∞n=1 which converges to m. Also
prove that no subsequence of {sm}∞m=1 can converge to a limit less than m.

4. Write the set of all rational numbers in (0, 1) as r1, r2, . . .. Calculate
lim
n→∞

sup rn and lim
n→∞

inf rn.

5. If sn → +∞, prove that lim
n→∞

sup sn = ∞ = lim
n→∞

inf sn.

6. Prove that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

7. If f : X → Y is a function, and A and B are subsets of Y , prove:

a) f−1(A ∩B) = f−1(A) ∩ f−1(B)

b) f−1(A ∪B) = f−1(A) ∪ f−1(B)

c) f−1(Ac) = f−1(A)c

8. Show by example that f(A ∩B) = f(A) ∩ f(B) is not always true.
Show by example that f(Ac) = f(A)c is not always true.

9. Find at least seven errors in mathematical communication in the following
six statements and explain whats wrong in each case.

a. Let f(x) = 1− x for all real x.
b. g(x) = x− 3
c. The function g, which is increasing, is zero at x = 3
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d. The function g which is increasing is greater than zero when x > 3.
e. The function which is increasing is less than zero when x < 3
f. f(x) = g(x). =⇒ x = 2
g. Rewrite item f. so that it is grammatically AND mathematically

correct AND unambiguous.
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