Topology and Geometric Group Theory Seminar
We introduce the concept of strongly quasiconvex subgroups of an arbitrary finitely generated group. Strong quasiconvexity generalizes quasiconvexity in hyperbolic groups and is preserved under quasi-isometry. We prove that strongly quasiconvex subgroups have many properties analogous to those of quasiconvex subgroups of hyperbolic groups. We study strong quasiconvexity and stability in relatively hyperbolic groups, two dimensional right-angled Coxeter groups, and right-angled Artin groups. We note that the result on right-angled Artin groups strengthens the work of Koberda-Mangahas-Taylor on characterizing purely loxodromic subgroups of right-angled Artin groups. When time permits, I will discuss briefly my current joint project with Jacob Russell and Davide Spriano on strongly quasiconvex subgroups of hierarchically hyperbolic groups.