Probability Seminar

Partha DeyUniversity of Illinois at Urbana-Champaign
Longest increasing path within the critical strip

Monday, October 26, 2015 - 4:00pm
Malott 406

Consider a Poisson Point Process of intensity one in the two-dimensional square $[0,n]^2$. In Baik-Deift-Johansson (1999), it was shown that the length $L_n$ of a longest increasing path (an increasing path that contains the most number of points) when properly centered and scaled converges to the Tracy-Widom distribution. Later Johansson (2000) showed that all maximal paths lie within the strip of width $n^{2/3+\epsilon}$ around the diagonal with probability tending to $1$ as $n\to \infty$. We consider the length $L_n^{(\gamma)}$ of maximal increasing paths restricted to lie within a strip of width $n^{\gamma}, \gamma<2/3$ around the diagonal and show that when properly centered and scaled it converges to a Gaussian distribution. We also obtain tight bounds on the expectation and variance of $L_n^{(\gamma)}$. Joint work with Matthew Joseph and Ron Peled.