Analysis Seminar

Qi SunUniversity of Wisconsin, Madison
Singularities of Curve Shortening Flow with Convex Projections

Monday, March 16, 2026 - 2:30pm
Malott 406

Understanding singularity formation is an important topic in the study of geometric flows. Since Gage-Hamilton-Grayson’s foundational results, it has largely been unknown how singularities of curve shortening flow form in higher codimensions. In this talk, I will present my recent results that in n dim Euclidean space, any curve with a one-to-one convex projection onto some 2-plane develops a Type I singularity and becomes asymptotically circular under curve shortening flow. As a corollary, an analog of Huisken's conjecture for curve shortening flow is confirmed, in the sense that any closed immersed curve in n dim Euclidean space can be perturbed in n+2 dim Euclidean space to a closed immersed curve which shrinks to a round point under curve shortening flow.