Topology Seminar
In this talk we investigate invariants that count periodic points of a map. Given a self map $f$ of a compact manifold we could detect $n$-periodic points of $f$ by computing the Reidemeister trace of $f^n$ or by computing the equivariant Fuller trace. In 2020 Malkiewich and Ponto showed that the collection of Reidemeister traces of $f^k$ for varying $k|n$ and the equivariant Fuller trace are equivalent as periodic point invariants, and they conjecture that for families of endomorphisms the Fuller trace will be a strictly richer invariant for $n$-periodic points.
In this talk we will explain our new result which confirms Malkiewich and Ponto's conjecture. We do so by proving a new Pontryagin-Thom isomorphism between equivariant parameterized cobordism and the spectrum of sections of a particular parametrized spectrum and using this result to carry out geometric computations.