Logic Seminar
Friday, September 13, 2024 - 2:55pm
Malott 230
A Reinhardt embedding is an elementary embedding from $V$ to $V$ itself, whose existence was refuted under the Axiom of Choice by Kunen's famous theorem. There were attempts to get a consistent version of a Reinhardt embedding, and dropping the Axiom of Powerset is one possibility. Richard Matthews showed that $\mathsf{ZFC} + \mathrm{I}_1$ proves $\mathsf{ZFC}$ without Powerset is consistent with a Reinhardt embedding, but the embedding $j\colon V\to V$ in the Matthews' model is not cofinal (i.e. there is an $a$ which is not contained in any $j(b)$). In this talk, I will show from $\mathsf{ZFC} + \mathrm{I}_0$ that $\mathsf{ZFC}$ without Powerset is consistent with a cofinal Reinhardt embedding.